Industry Level and Aggregate Measures of Productivity Growth with Explicit Treatment of Taxes on Products

Pirkko Aulin-Ahmavaara and Perttu Pakarinen

For additional information please contact:
Pirkko Aulin-Ahmavaara
E-Mail pirkko.aulin-ahmavaara@elisanet.fi

Perttu Pakarinen
perttu.pakarinen@stat.fi

This paper is placed on the following websites: www.iariw.org
Industry Level and Aggregate Measures of Productivity Growth with Explicit Treatment of Taxes on Products

Pirkko Aulin-Ahmavaara
Helsinki School of Economics and Statistics Finland
and
Perttu Pakarinen
Statistics Finland

Abstract. We derive industry and aggregate level measures of TFP growth in an open economy as well as the aggregation/decomposition rules from/to the industry level. Net taxes on products in intermediate uses are assumed to be nonzero also at the economy level and different industries are allowed to face different tax rates for the same intermediate inputs. The economy is assumed to be maximizing either the value of deliveries to final demand or value added. In the final demand approach the aggregation equation includes, besides terms representing reallocation of labour and capital, also terms representing reallocation of products in intermediate uses. In the case of Törnqvist indices, if double deflation is used, even reallocation of deliveries final demand between industries contributes to the aggregate TFP growth. For value added there are two alternatives, the approach based on the production possibilities frontier of the industries’ value added and the one based on the economy level production function. In the latter case also reallocation of value added between industries contributes to the aggregate TFP growth. When the theoretical continuous time Divisia indices are used reallocation terms disappear if tax rates/ prices are identical across industries. In the case of the Törnqvist indices a reallocation term relating to an input only disappears if the growth rate of the input and its value share in the industry’s total output are identical across industries. Our results can be generalized to differences in the prices paid by the purchasers caused by any other factor as well. The paper includes an empirical experiment based on the Finnish data.

Key words: Growth accounting, productivity, aggregation
JEL classification: C43, O47

* Correspondence to Pirkko Aulin-Ahmavaara, Oulunkyläntori 2 C 16, 00640 Helsinki, Finland, Email: pirkko.aulin-ahmavaara@elisanet.fi.
Pirkko Aulin-Ahmavaara’s research was financially supported by the Specific Targeted Research Project “EUKLEMS 2003. Productivity in the European Union. A Comparative Industry Approach” funded by European Commission, Research Directorate General, within the Sixth Framework Program, Contract No. 502049. This is an abridged, revised and partly augmented version of the EUKLEMS Working paper Nr. 8. Comments on an earlier version of this paper, presented by the participants of the London (October 2004) meeting of the EUKLEMS project and those received from Erwin Diewert are thankfully acknowledged. The usual disclaimers apply and the views of the authors do not necessarily reflect those of mentioned persons or institutions.
1. Introduction

In the neoclassical productivity analysis producers are assumed to be maximizing the value of their output in a competitive economy. The necessary conditions of producer equilibrium require, in this framework, the relative prices of inputs and outputs to be identical with the respective marginal rates of transformation. Domar (1961) derived an aggregation rule from the industry level to any aggregate level (the entire economy or a group of industries). The aggregate rate of TFP growth is, in the Domar aggregation, obtained by weighting each industry-level rate of TFP growth “by the ratio of the output of its industry to the value of the final product of the sector.” Hulten (1978) proved the Domar aggregation rule in the case of a closed economy, in which prices paid by the users are equal to those received by the producers and all industries pay identical prices for their primary inputs. Jorgenson, Gollop and Fraumeni (1987) in their seminal contribution to productivity measurement developed an aggregation rule in which neither of these assumptions is needed. It is however based on the aggregate production function. Jorgenson (1969) introduced methodology based on aggregate production possibility frontier. This methodology is used by Jorgenson and Stiroh (2000) and Jorgenson (2001).

Taxes on products, as well as respective subsidies, often constitute a wedge between the prices paid by the purchaser, i.e. user, and the one received by the producer. Especially in economies with value added taxes the difference between these two sets prices can be considerable and the prices paid for the same product may differ across industries. This is because all the producers are not liable to charge value added tax on their sales, if any, and therefore cannot deduct the value added taxes paid for their intermediate inputs from the VAT invoiced to their customers. Another reason for the differences in the tax margins across the industries is the fact the products used as intermediate inputs actually consist of baskets of products with possibly different tax rates. Also trade and transport margins, if they are included in the purchasers’ prices and not treated as a separate inputs can lead to different purchaser’s prices for different users. Here these margins are assumed to be treated as a separate input. The results can however, in principle, be interpreted to cover the trade and transport margins as well.

In productivity analysis it is rather natural to value the output and inputs from the producer’s point of view. E.g. JGF (1987) value outputs at basic prices and intermediate inputs at purchaser’s prices less trade and transport margins. However, at the economy level the measure of the performance of an economy is often GDP at market prices. This would require the deliveries to final demand to be valued at purchasers’ price. Diewert (2005) has suggested the ensuing discrepancy between he GDP at market prices and total value added at basic prices to be rectified by treating
product taxes as a separate “industry”, with its own value added. But he agrees with Jorgenson and Griliches (1972) that for output basic prices are the prices best suited to productivity accounts.

Gollop (1987) derived the industry and economy level TFP measures as well as the respective aggregation/decomposition rules in an economy maximising the aggregate value of the deliveries to final demand (at basic prices) on the one hand and for an economy maximising the value of the aggregate value added on the other, with the respective production possibilities frontiers as starting points. Unlike Hulten (1978), Gollop (1987) did not assume either closed economy or identical prices received and paid for products used as intermediate inputs. Gollop (1987) did however assume that 1) at the economy level product taxes less subsidies on intermediate inputs cancel out and 2) all the industries pay identical prices for a product used as intermediate input.1 Also Aulin-Ahmavaara (2003) discussed the need to take into account the product taxes and subsidies on intermediate inputs in productivity measurement based on national accounts.

A natural candidate for the discrete approximation of the continuous time Divisia index is the Törnqvist or translog productivity index and respective quantity indexes for inputs and outputs used by Christensen and Jorgenson (1970) as well as by JGF (1987). Diewert (1976) has shown Törnqvist index to be exact for translog aggregator function and Caves et al (1982) have presented strong economic support for the use Törnqvist productivity index. On the other hand Hill (2001) argues that the choice between different superlative indices cannot be made solely on the basis of the economic approach. Milana (2005) concludes that the index numbers normally considered as superlative in fact are hybrids and recommends constructing a range of alternative index numbers (including those that are not superlative). The nonsuperlative Laspeyres indexes were used by Jorgenson and Griliches (1967) and later also e.g. by Stenbæk and Sørensen (2004) in their study on the productivity development in Denmark.

In the present paper different approaches to the measurement and aggregation of TFP growth are studied, with an emphasis on the implications of the existence of taxes and subsidies on products. Unlike Gollop (1987) we do not assume taxes and subsidies on products in intermediate uses to cancel out at the economy level. Neither do we assume identical tax rates in all the industries for a product used as intermediate input. Following Jorgenson and Griliches (1967) we start with the accounting identities and derive, in sections 2-4, the industry and economy level TFP-measures based on different definitions of output as well as the respective aggregation rules. We outline, in line with Gollop (1987), with appropriate modifications, the interpretation of our results in terms of the neoclassical theory of production and producer behaviour. Our theoretical system is based on the continuous time Divisia indices. The results based on it apply in the case of the additive laspey-

1 This is obvious for instance from his equation (19).
res indices (Aulin-Ahmavaara and Pakarinen, 2005). In section 5 we derive respective systems based on the Törnqvist indices on the other. In section 6 we report the preliminary results from the calculations based on the Finnish input output tables from years 1999 and 2000 and discuss the choices to be made in the empirical calculations.

2. Industry level measures of TFP growth

We start the derivation of TFP measures, in line with Jorgenson and Griliches (1967), from the following accounting identity:

\[\mathbf{q}' \mathbf{z} = \mathbf{p}' \mathbf{v} \]

where \(\mathbf{q} \) is the price vector of outputs, \(\mathbf{z} \) is the vector of output quantities, \(\mathbf{p} \) is the price vector of inputs and \(\mathbf{v} \) is the vector of input quantities.

The rate of total factor productivity growth is defined as the difference between the growth rates of outputs and inputs:

\[d \log t = \sum_i \alpha_i \log z_i - \sum_j \beta_j \log v_j = \sum_j \beta_j d \log q_j - \sum_i \alpha_i d \log p_i, \]

where \(\alpha_i \) is the share of the \(i \)th output in total revenue and \(\beta_j \) the share of the \(j \)th input in total cost and \(d \log y \) is the logarithmic time derivative of the variable \(y \). This measure can be given an economic interpretation as the shift of the production function when a production function with constant returns to scale is assumed and all the relevant assumptions concerning markets and producer behaviour are made.

Following the SNA93 (ISWGNA, 1993), and assuming that capital and labour compensation together cover the entire value added, the accounting identity for an industry with only one type of output is defined as follows:

\[q_j Q_j = \sum_i p_{ij} M_{ij} + \sum_i p_{ij}^M M_{ij}^M + \sum_k p_{ij}^K K_{ij} + \sum_j p_{ij}^L L_{ij}. \]
The following notation is used

\(Q_j \) quantity of the output of the \(j \) th industry

\(q_j \) basic price of the output of the \(j \) th industry

\(M_{ij} \) quantity of the output of the \(i \) th industry used as intermediate input by the \(j \) th industry

\(p_{ij} \) purchaser’s price (without trade and transport margins) paid by the \(j \) th industry for a unit of the output of the \(i \) th industry it uses as intermediate input

\(d_{ij} \) net\(^2\) taxes on products\(^3\) per unit of output of industry \(i \) used as input in industry \(j \)

\(M_{ij}^M \) quantity of the \(i \) th imported product used as intermediate input by the \(j \) th industry

\(q_i^M \) c.i.f. price of \(i \) th imported product

\(p_{ij}^M \) purchaser’s price (without trade and transport margins) paid by the \(j \) th industry for a unit of the \(i \) th imported product it uses as intermediate input

\(d_{ij}^M \) net taxes on products per unit of imported product \(i \) used as input in industry \(j \).

\(M_{ij}^M \) quantity of the \(i \) th imported product used by the \(j \) th industry as intermediate input

\(p_{ij}^K \) price paid by the \(j \) th industry for the capital input of category \(k \)

\(K_{ij} \) quantity of the capital input of category \(k \) used by the \(j \) th industry

\(p_{ij}^L \) price paid by the \(j \) th industry for the labour input of category \(l \)

\(L_{ij} \) quantity of the labour input of category \(l \) used by the \(j \) th industry.

When trade and transport margins are treated as separate inputs then the only difference between basic prices and purchasers’ prices are taxes and subsidies on products. Thus we can also write

\[
q_j Q_j = \sum_i (1 + d_{ij}) q_i M_{ij} + \sum_i (1 + d_{ij}^M) q_i^M M_{ij}^M + \sum_k p_{ij}^K K_{ij} + \sum_l p_{ij}^L L_{ij}.
\]

The accounting identities above are based on gross output. The two other possible concepts of output are the so called sectoral output and value added. For sectoral output the accounting identity should be written as follows:

\(^2\) Taxes on products are net of similar subsidies. It is of course also possible to interpret this term to represent a price differential caused by some other factors.

\[q_j \bar{O}_j = q_j O_j - q_j M_{ij} \]
\[= d_{ij} M_{ij} + \sum_{i \neq j} (1 + d_{ij}) q_i M_{ij} - \sum_i (1 + d_{ij}^{M_{ij}}) q_i^{M_{ij}} M_{ij}^{M_{ij}} + \sum_k p_k^{K_i} K_{ij} + \sum_i p_i^L L_{ij} \]

with sectoral output denoted by \(\bar{O}_j \). Using the concept of sectoral output requires the industry of origin of the intermediate inputs to be known and therefore is possible only in the case of symmetric input-output tables. The accounting identity for value added is:

\[v_j V_j = q_j O_j - \sum_i q_i M_{ij} - \sum_{i \neq j} d_{ij} q_i M_{ij} - \sum_i q_i^{M_{ij}} M_{ij}^{M_{ij}} - \sum_{i \neq j} d_{ij}^{M_{ij}} q_i^{M_{ij}} M_{ij}^{M_{ij}} = \sum_k p_k^{K_i} K_{ij} + \sum_i p_i^L L_{ij} \]

Applying the formula in equation (2) to the accounting identity in equation (4) gives the rate of industry level TFP change for gross output

\[d \log t_j = (q_j O_j)^{-1} [q_j O_j d \log O_j - \sum_i (1 + d_{ij}) q_i M_{ij} d \log M_{ij} - \sum_i (1 + d_{ij}^{M_{ij}}) q_i^{M_{ij}} M_{ij}^{M_{ij}} - \sum_k p_k^{K_i} K_{ij} d \log K_{ij} - \sum_i p_i^L L_{ij} d \log L_{ij}] \]

The same formula is obtained, following e.g. Gollop (1987) by taking the total logarithmic derivative of the industry level production function

\[Q_j = h_j (L_j, K_j, M_{ij}, M_{ij}^{M_{ij}}, M_{ij}^{M_{ij}}, M_{ij}^{M_{ij}}, t) \]

and substituting the conditions of producer equilibrium into the result.

Respectively the rate of TFP growth and the production function in the case of “sectoral output” are the following:

\[d \log r_j = (q_j O_j)^{-1} [q_j O_j d \log O_j - d_{ij} q_j M_{ij} d \log M_{ij} - \sum_i (1 + d_{ij}) q_i M_{ij} d \log M_{ij} - \sum_i (1 + d_{ij}^{M_{ij}}) q_i^{M_{ij}} M_{ij}^{M_{ij}} - \sum_k p_k^{K_i} K_{ij} d \log K_{ij} - \sum_i p_i^L L_{ij} d \log L_{ij}] \]

\(^3\)“Taxes on products” is the term used in the SNA93. It is used also here. The corresponding term in the SNA68 was “commodity taxes”.

5
and

\[Q_j = \bar{Q}^j(L_j, K_j, M_{1j}, M_{2j}, \ldots M_{ij}, \ldots M_{nj}, M_{1j}^M, M_{2j}^M, \ldots M_{nj}^M, t). \]

Although the production function in equation (10) has the same arguments as the one in equation (8), it is not the same function. The marginal revenue product of the intermediate input from the industry itself has now, in the producer equilibrium, to be equal to the net rate of product taxes paid on it.

And finally for value added the rate of industry level TFP growth is

\[d \log \tau_j^j = (v_j V_j)^{-1} [v_j V_j d \log V_j - \sum_k p_{v}^k K_{v}^k d \log K_{v}^k - \sum_l p_{v}^l L_{v}^l d \log L_{v}^l] \]

The industry is now assumed to be maximizing its value added with the following value added function

\[V_j = V^j(L_j, K_j, t). \]

The existence of this kind of industry level value added function that links technological change exclusively to real value added and primary inputs, implies that the industry level production function is value-added separable:

\[Q_j = g^j[V^j(L_j, K_j, t), M_{1j}, M_{2j}, \ldots M_{nj}, M_{1j}^M, M_{2j}^M, \ldots M_{nj}^M]. \]

The relationship between the measure based on the sectoral output and the one based on gross output is obtained by taking logarithmic derivative of both sides of the first expression of equation (5)

\[q_j \bar{Q}_j d \log \bar{Q}_j = q_j Q_j d \log Q_j - q_j M_{jj} d \log M_{jj}. \]

Substituting the result in equation (9) gives, by equation (7)

In this case the volume index of value added and the measure of TFP growth are “path independent”. The, possibly path dependent, volume and price indices of value added, however do exist even if the production function is not separable. For a discussion of this see OECD (2001) Productivity Manual and the sources mentioned in it.
(15) \[d \log t_j = (q_j Q_j)^{-1} (q_j Q_j) d \log t_j. \]

Taking the logarithmic derivative of the first expression in equation (6) produces:

\[v_j V_j d \log V_j = q_j Q_j d \log Q_j - \sum_i (1 + d_{ij}) q_i M_{ij} d \log M_{ij} - \sum_i (1 + d_{ij}^M) q_i^M M_{ij}^M d \log M_{ij}^M. \]

Substituting this in equation (11) gives in view of equation (7) the following relationship between the industry level measures based on the value added on the hand and on the gross output on the other:

(17) \[d \log t_j = (v_j V_j)^{-1} (q_j Q_j) d \log t_j. \]

Remark 1. If the industry-level measure of output is the “sectoral output” it is possible that the input from industry itself still has to be included in the production function as well as in the calculation of the rate of TFP change. The weight of this input is the cost share of net product taxes paid on it. (equation 9).

3. **Economy level measures of TFP growth**

At the economy level the entire economy is treated as a single unit of production. The difference to the industry level, in our case, is that the output of an economy consists of several products. Since the economy is treated as a single unit of production we obviously have to assume that all the industries face identical prices for their inputs. The quantity \(Z \) and the price \(p^Z \) of an input at the economy level can in this case, in line with JGF (1987), be defined, on the basis of the industry level quantities and prices, as follows:

(18) \[\sum_j p_j^Z Z_j = p^Z \sum_j Z_j = p^Z Z. \]

The economy level accounting identity based on the gross output now is

(19) \[\sum_j q_j Q_j = \sum_i (q_i + d_i) M_i + \sum_i (q_i^M + d_i^M) M_i^M + \sum_k p_k^L K_k + \sum_i p_i^L L. \]
At the economy level the deliveries to final demand of domestic output at basic prices constitute the counterpart of sectoral output at industry level

\[
\sum_j q_j Y_j = \sum_j q_j q_j - \sum_{j,k} q_j M_{ji}
\]

\[
= \sum_i d_i q_i M_{i} + \sum_j (1 + d_{ii} M_{j}) q_j M_{j} M_{j} + \sum_k p_k K_{k_{j}} + \sum L \cdot
\]

Our third measure of economy level output is the sum of the values of the industries’ value added:

\[
\sum_j v_j V_j = \sum_j q_j q_j - \sum_j (1 + d_{ji} M_{j}) q_j M_{j} - \sum_j (1 + d_{ji} M_{j}) q_j M_{j} M_{j}
\]

\[
= \sum_k p_k K_{k_{j}} + \sum L .
\]

The aggregate production function is not, in this case, assumed to exist, hence the different prices of the value added as well as for the intermediate inputs in different industries. The industries are not assumed to be paying identical prices for their intermediate inputs, only for their capital and labour inputs. From the equations (21) and 20 we obtain:

\[
\sum_j q_j Y_j = \sum_j v_j V_j + \sum_j d_j q_j M_{j_{j}} + \sum_d q_j M_{j_{j}} + \sum_j (1 + d_{ji} M_{j}) q_j M_{j} M_{j} .
\]

Remark 2. The sum of the values of the industries value added and the sum of the values of the deliveries to final demand (at basic prices) are equal if and only if there are no imported intermediate inputs and the aggregate net value of taxes and subsidies on products in intermediate uses equals zero (equation 22).

Finally assuming that the aggregate production function exists, we have the forth measure of economy level output, i.e. the economy level value added, which following JGF (1987) is defined as follows:

\[
\sum_j q_j Y_j = \sum_j v_j V_j + \sum_j d_j q_j M_{j_{j}} + \sum_j (1 + d_{ji} M_{j}) q_j M_{j} M_{j} .
\]

5 Another option would be to use purchasers’ prices, or rather purchasers’ prices minus trade and transport margins. This would mean valuation from the users’ point of view rather than from the producer’s point of view. In case the valuation were based on the purchaser’s prices, then equation (22) should be written as follows:

\[
\sum_j p_j Y_j = \sum_j v_j V_j + \sum_j d_j q_j M_{j_{j}} + \sum_j d_j M_{j_{j}} + \sum_j d_j q_j M_{j} M_{j} + \sum_j d_j Y_j .
\]

The three last terms of this expression together include all the net taxes on products except those paid for imported products in final uses.

6 Yet another conceivable measure of economy level output would have been net deliveries of all products to final demand, i.e. deliveries final demand all products at basic prices minus imports, which is equal to output.
Then the economy level accounting identity can be written as follows:

\[vV = v \sum_j V_j = \sum_j v_j V_j \]

Applying the formula in equation (2) to the accounting equation (19) gives the rate of TFP growth for the gross output of the economy

\[
d \log T = (\sum_j q_j Q_j)\cdot \left\{ \sum_j q_j Q_j d \log Q_j - \sum_i (1 + d_i) q_i M_i d \log M_i - \sum_i (1 + d_i) q_i M_i d \log M_i - \sum_i p_i^K K_i d \log K_i - \sum_i p_i^L L_i d \log L_i \right\}
\]

The maximum value of gross output \(\gamma \) can be expressed as a function of industries’ gross output \(Q_j \), primary inputs \(K, L \), domestically produced intermediate inputs \(M_j \), imported intermediate inputs \(M_i^M \), and time \(t \):

\[
\gamma = F(Q_1, Q_2, \ldots, Q_n, L, K, M_1, M_2, \ldots, M_n, M_1^M, M_2^M, \ldots, M_n^M, t).
\]

The value of gross output is maximized subject to fixed supplies of domestic capital and labour inputs, market equilibrium and linearly homogeneous industry level production functions in equation (8). The function \(F \) is homogenous of degree minus one in industries’ gross output and of degree one in the rest of the variables (the input variables), except time, \(t \). The rate of aggregate TFP growth is obtained by setting \(\gamma = 1 \), taking the total logarithmic derivative of \(F \) with respect to time and substituting the producer equilibrium conditions into the result.

Applying the formula in equation (2) to the accounting equation (20) gives the rate of TFP growth based on the deliveries to final demand of domestic output at basic prices minus intermediate deliveries of all products at basic price. This is not equal to value added at basic prices, i.e. output at basic prices minus intermediate inputs at purchasers’ prices.

\[\text{at basic prices minus intermediate deliveries of all products at basic price. This is not equal to value added at basic prices, i.e. output at basic prices minus intermediate inputs at purchasers’ prices.}\]

\[\text{The derivation of TFP-measures starting from the production frontiers and production functions outlined in this paper is mainly based on our interpretation of Gollop (1987). It is also discussed in Aulin-Ahmavaara (2004).}\]
In this case the economy is maximising the value of deliveries to final demand

\[\mu = H(Y_1, Y_2, \ldots, Y_n, L, K, M_1, M_2, \ldots, M_{n'}, M_{1'}, \ldots, M_{n'}', t). \]

subject to fixed supplies of domestic capital and labour inputs, market equilibrium and linearly homogeneous industry level production functions in equation (8). Domestic intermediate inputs appear in equation (28) but their role is different from the one in (26). The second term in the square brackets in equation (27) disappears regardless of the rates of growth of individual intermediate inputs if there are no taxes or subsidies on products in intermediate uses. On the other hand if \(d_i \neq 0 \) for some domestic intermediate inputs the value of the term depends on the rates of growth of individual intermediate inputs.

Remark 3. When the economy level production possibilities frontier is based on the deliveries to final demand of domestic products then variables representing domestic intermediate inputs have to be included in it. Accordingly, also terms representing the rates of change of domestic intermediate inputs weighted by the shares of net product taxes paid on them have to be included in the formula for the rate of economy level TFP growth (equation 27).

Applying the formula in equation (2) to the latter expression in the accounting equation (21) gives the rate gives the rate of TFP growth based on the industries’ value added

\[d \log T^v = \left(\sum_j v_j V_j \right)^{-1} \left[(\sum_j v_j V_j d \log V_j - \sum_k p_k^L K_k d \log K_k - \sum_i p_i^L L_i d \log L_i) \right]. \]

In this case the maximum value of the aggregate value added (\(\hat{\lambda} \)) is a function of the quantities of the industries’ value added (\(V_j \)), aggregate labour (\(L \)) and capital (\(K \)) inputs, and time (\(t \)):

\[\hat{\lambda} = G(V_1, V_2, \ldots, V_n, L, K, t). \]

The economy is maximising \(\hat{\lambda} \) subject to linearly homogeneous value added functions in equation (12) as well as market equilibrium conditions, and aggregate supplies of capital and labour.
And finally applying formula in equation (2) to latter expression in the accounting equation (24) gives the economy level rate of TFP growth based on the economy level value added:

\[(31) \quad d \log T^w = (vV)^{-1}(vVd \log V - \sum_k p_k^k K_k d \log K_k - \sum_i p_i^i L_i d \log L_i) .\]

In this case the economy the aggregate value added function

\[(32) \quad V = V(K, L, t) .\]

is assumed to exist. The existence of aggregate value-added function requires all the industry value added functions to be identical up to a scalar multiple (see JGF, 1987).

The relationships between the different economy level measures can be easily established by following the familiar procedure used at the industry level. From the first expression in equation (20) we get

\[(33) \quad \sum_j q_j Y_j d \log Y_j = \sum_j q_j Q_j d \log q_j Q_j - \sum_{j,i} q_j M_{ji} d \log M_{ji} .\]

Substituting this into equation (27) gives, by equation (25), the following relationship between the economy level measures based on the gross output on the one hand and on the deliveries to final demand on the other:

\[(34) \quad d \log T = (\sum_j q_j Y_j)^{-1}(\sum_j q_j Q_j) d \log T .\]

The relationship between the measure based on the industries’ value added and the measure based on the deliveries to the final demand of domestic output is somewhat less straightforward. From equation (22) we get

\[(35) \quad \sum_j q_j Y_j d \log Y_j = \sum_j v_j V_j d \log V_j
\]
\[+ \sum_j \sum_i d_{ij} q_i M_{ij} d \log M_{ij} + \sum_j \sum_i q_j^m M^m_{ji} d \log M^m_{ji} + \sum_j \sum_i d_{ij} q_i^m M^m_{ji} d \log M^m_{ji} .\]

Substituting this into equation (27) leads by equation (29) to the following relationship
\[
d d \log T = (\sum_j q_j V_j)^{-1} \left[(\sum_j V_j) d \log T \right] \\
+ \left(\sum_j \sum_i d_{ij} q_i M_{ij} d \log M_{ij} - \sum_i d_i M_i d \log M_i \right) \\
+ \left(\sum_j \sum_i d_{ij}^M q_i^M M_{ij}^M d \log M_{ij}^M - \sum_i d_i^M M_i^M d \log M_i^M \right) \\
\]

(36)

If the price of an input \(Z \) is identical for all the industries, i.e. if \(p_j^{Z} = p^Z \) for all values of \(j \), then it follows directly from the definition in equation (18) that

\[
\sum_j p_j^Z Z_j d \log Z_j = \sum_j p^Z dZ_j = p^Z dZ = p^Z Z d \log Z .
\]

(37)

Therefore the second and third lines in equation (36) disappear if the tax rates of intermediate inputs are identical in all industries.

To establish the relationship between the measures based on the industries value added and the one based on the economy level value added function we take the logarithmic time from the first expressions in equations (21) and (24). This yields, by equation, (37) the following result:

\[
vVd \log V = \sum_j v_j V_j d \log V_j \\
= \left(\sum \sum_i d_{ij} q_i M_{ij} d \log M_{ij} - \sum_i d_i M_i d \log M_i \right) \\
+ \left(\sum \sum_i d_{ij}^M q_i^M M_{ij}^M d \log M_{ij}^M - \sum_i d_i^M M_i^M d \log M_i^M \right)
\]

(38)

By substituting this result in equation (31) we obtain by equations (23) and (29):

\[
d \log T^w = d \log T^v \\
+ (vV)^{-1} \left[(\sum_j \sum_i d_{ij} q_i M_{ij} d \log M_{ij} - \sum_i d_i q_i d \log M_i \right) \\
+ \left(\sum \sum_i d_{ij}^M q_i^M M_{ij}^M d \log M_{ij}^M - \sum_i d_i^M q_i^M M_i^M d \log M_i^M \right) \\
\]

(39)

And furthermore substituting (39) in equation (36) gives the relationship between the measures based on the economy level value added and the measure based on the deliveries to final demand.
Remark 4. If all the industries pay identical prices for their intermediate inputs, both domestic and imported the measures of economy level TFP growth based on the economy level value added and the one based on the industries value added are identical (equation 39). The ratio of these measures to the one based on the deliveries to final demand is, in this case equal to the ratio of economy level value added to the value of the deliveries to final demand (equations 36 and 40). If the prices paid by different industries for intermediate inputs are not identical, then the differences between the economy level rate of TFP growth based on the industries’ value added on the one hand and of the two other measures depend also on the reallocation of these intermediate inputs across industries (equation 36 and 39).

4. Aggregation from the industry level to the economy level

To establish the relationship between the industry level measure based on gross output, equation (7) and the economy level measure based on the deliveries to final demand, equation (27), we multiply both sides of the equation (7) for each industry by the value of the industry's output. Summing up across industries produces:

\[
\sum_j q_j Q_j d \log t_j = \sum_j q_j Q_j d \log Q_j - \sum_j \sum_i (1 + d_{ij}) q_i M_y d \log M_y \\
- \sum_j \sum_i (1 + d_{ij}^v) q_j^M M_y^d d \log M_y^d - \sum_j \sum_k p_{ij}^K d \log K_{ij} - \sum_j \sum_i^I p_i^L d \log L_{ij}.
\]

Dividing both sides of (41) by the aggregate value of the deliveries to final demand \(\sum q_j Y_j \) and subtracting the result from both sides of equation (27) yields
\[
\begin{align*}
 d \log T &= (\sum_j q_j Y_j)^{-1} \left[\sum_j q_j Q_j d \log t_j \right. \\
 &\quad + \sum_j \left[\sum_i d_i q_i M_i d \log M_i - \sum_i d_i q_i M_i d \log M_i \right] \\
 &\quad + \sum_j \left[\sum_i d_i q_i M_i^M d \log M_i^M - \sum_i d_i q_i M_i^M d \log M_i^M \right] \\
 &\quad + \left. \sum_k \left[\sum_i p^K_{ij} K_{ij} d \log K_{ij} - \sum_k p^K_{ij} K_{ij} d \log K_{ij} \right] \\
 &\quad + \left. \sum_k \left[\sum_i p^L_{ij} L_{ij} d \log L_{ij} - \sum_i p^L_{ij} L_{ij} d \log L_{ij} \right] \right].
\end{align*}
\]

The contribution of the industry level rates of TFP growth is represented by the first term in square brackets. The rest of the terms represent the contribution of the reallocation of the inputs by industry.

Remark 5. The rate of economy level TFP growth based on the deliveries of domestic output to final demand consists of (equation 42) 1) the weighted sum of the industry-level rates of TFP-growth based on the industries’ gross outputs with the ratios of the industries’ outputs to the total value of deliveries to final demand as weights and 2) terms that reflect reallocation of capital, labour and intermediate inputs, both domestic and imported, across industries. However, if all the industries pay identical price for an individual input, the rate of the economy level TFP-growth does not depend on the reallocation of that input across industries (equations 42 and 37).

To establish the relationship between the industry level measures based on the industries’ value added, in equation (11) and the economy level measure based on the industries’ value added, equation (27) we multiply both sides of equation (11) by the ratio \((v_j V_j)(\sum_j v_j V_j)^{-1}\). Summing up across industries and subtracting the result from both sides of equation (27) produces

\[
\begin{align*}
 d \log T^v &= \left(\sum_j v_j V_j\right)^{-1} \left[\sum_j v_j V_j d \log t_j \right. \\
 &\quad + \sum_j \left[\sum_k p^K_{ij} K_{ij} d \log K_{ij} - \sum_k p^K_{ij} K_{ij} d \log K_{ij} \right] \\
 &\quad + \left. \sum_k \left[\sum_i p^L_{ij} L_{ij} d \log L_{ij} - \sum_i p^L_{ij} L_{ij} d \log L_{ij} \right] \right].
\end{align*}
\]

This equation gives the economy level measure based on the value added approach in terms of the industry level measures based on the value added.
Substituting the relationship between the industry level rate of TFP growth based on the gross output given in equation (15) into equation (43) produces an expression for the relationship between the aggregate value-added based rate of TFP-growth and the respective industry level rates expressed in terms of total output:

\[
d \log T^v = \left(\sum_j v_j V_j \right)^{\frac{-1}{2}} \sum_j q_j Q_j d \log t_j \\
+ \left(\sum_k p_{kj}^E K_{kj} d \log K_{kj} - \sum_k p_{kj}^E K_k d \log K_k \right) \\
+ \left(\sum_l p_{jl}^L L_{jl} d \log L_{jl} - \sum_l p_{jl}^L L_l d \log L_l \right)
\]

(44)

Remark 6. The rate of economy level TFP growth based on the industries’ value added consists of (equation 44) 1) the weighted sum of the industry-level rates of TFP-growth based on the industries’ gross outputs with the ratios of the industries’ output to the sum of the industries’ value added as weights and 2) terms that reflect reallocation of capital and labour across industries. However the economy level measure based on the production possibility frontier does not depend on the reallocation of intermediate input with different tax rates across industries. But the economy level measure based on the economy level value added does depend on the reallocation of intermediate inputs (equation 39).

5. Application Based on Törnqvist indexes

The logarithms of industry-level Törnqvist quantity indices are defined as follows:

Output at basic prices \(\Delta \log Q_j = \log q_j^0 Q_j^0 - \log q_j^0 Q_j^0 \),

Deliveries to final demand at basic prices \(\Delta \log Y_j = \log q_j^0 Y_j^0 - \log q_j^0 Y_j^0 \),

Average value share \(\bar{u}_j = \frac{u_j^0}{\sum_i u_i^0} = \left(\frac{u_j^0}{\sum_i u_i^0} + \frac{u_j^1}{\sum_i u_i^1} \right)^{1/2} \),

Domestic intermediate inputs at purchasers’ prices\(^8\) \(\Delta \log M_j = \sum_i \frac{(1 + d_{ij}) q_j M_{ij}}{\sum_i (1 + d_{ij}) q_i M_{ij}} \Delta \log M_{ij} \),

\(^8\) Excluding trade and transport margins.
Domestic intermediate inputs at basic prices
\[\Delta \log M^M_{ij} = \sum_i \frac{q_i^j M^M_{ij}}{q_j Q_j} \Delta \log M^M_{ij}, \]
where \(\Delta \log M^M_{ij} = \log q^0_i M^M_{ij} - \log q^0_i M^M_{ij} \).

Imported intermediate inputs at purchasers’ prices
\[\Delta \log M^P_{ij} = \sum_i \frac{(1 + d^P_{ij})q_i^j M^P_{ij}}{q_j Q_j} \Delta \log M^P_{ij}, \]
Imported intermediate inputs at basic prices
\[\Delta \log M^B_{ij} = \sum_i \frac{q_i^j M^B_{ij}}{q_j Q_j} \Delta \log M^B_{ij}, \]
where \(\Delta \log M^B_{ij} = \log q^0_i M^B_{ij} - \log q^0_i M^B_{ij} \).

Labour input
\[\Delta \log L_j = \sum_i \left(\frac{p_i L_0}{p_j L_j} \right) \Delta \log L_j. \]
Capital input
\[\Delta \log K_j = \sum_k \left(\frac{p_k K_0}{p_j K_j} \right) \Delta \log K_j. \]

We use the following notation for value shares:
\[\bar{\pi}_j^{MQ} = \sum_i (1 + d^Q_{ij})q_i^j M^Q_{ij}, \quad \bar{\pi}_j^{MBQ} = \sum_i q_i^j M^Q_{ij}, \quad \bar{\pi}_j^{MMQ} = \sum_i (1 + d^Q_{ij})q_i^j M^Q_{ij}, \]
\[\bar{\pi}_j^{MMBQ} = \sum_i q_i^j M^Q_{ij}, \quad \bar{\pi}_j^{LQ} = \sum_i \frac{p_i L_0}{p_j L_j} \frac{k_i}{q_j Q_j} \Delta \log L_j, \quad \bar{\pi}_j^{KQ} = \sum_k \frac{p_k K_0}{p_j K_j} \frac{k_i}{q_j Q_j} \Delta \log K_j, \quad \bar{\pi}_j^{VQ} = \frac{v_j V_j}{q_j Q_j} \Delta \log V_j, \quad \bar{\pi}_j^{YQ} = \frac{y_j Y_j}{q_j Q_j} \Delta \log Y_j. \]

The rate of industry level TFP-change based on the gross output is now defined as follows:
\[\Delta \log t_j = \Delta \log Q_j - \bar{\pi}_j^{MQ} \Delta \log M^B_{ij} - (\bar{\pi}_j^{MQ} \Delta \log M^P_{ij} - \bar{\pi}_j^{MBQ} \Delta \log M^B_{ij}) \]
(45) \[-\bar{\pi}_j^{MMBQ} \Delta \log M^B_{ij} - (\bar{\pi}_j^{MMQ} \Delta \log M^P_{ij} - \bar{\pi}_j^{MMBQ} \Delta \log M^B_{ij}) \]
\[-\bar{\pi}_j^{LQ} \Delta \log L_j - \bar{\pi}_j^{MQ} \Delta \log K_j. \]

Because of the lack of consistency in aggregation of Törnqvist indices, the application of our empirical results is not quite straightforward. It is not possible to directly break down the rate of
change of the intermediate inputs into the contributions of the intermediate inputs at basic prices on
the one hand and of the tax margins on the other. Therefore the terms in parenthesis on the RHS of
equation (45) are needed to catch the impact of the taxes on products.

For the economy level we define the following logarithms of Törnqvist quantity indices:

Gross output at basic prices

\[\Delta \log Q = \sum_i \frac{q_i Q_i}{\sum q_i Q_i} \Delta \log Q_i \]

Intermediate uses of domestic products at purchasers’ prices

\[\Delta \log M = \sum_i \frac{(1 + d_{ij})q_i M_i}{\sum_i (1 + d_{ij})q_i M_i} \Delta \log M_i \]

Intermediate uses of domestic products at BP

\[\Delta \log MB = \sum_i \frac{q_i M_i}{\sum_i q_i M_i} \Delta \log M_i , \]

where \(\Delta \log M_i = \log q_i^0 M_i^1 - \log q_i^0 M_i^0 \).

Imported intermediate inputs at PP

\[\Delta \log M^M = \sum_i \left(\frac{(1 + d_{ij}^M)q_i^M M_i^M}{\sum_i (1 + d_{ij}^M)q_i^M M_i^M} \Delta \log M_i^M \right), \]

Imported intermediate inputs at BP

\[\Delta \log MB^M = \sum_i \left(\frac{q_i^M M_i^M}{\sum_i q_i^M M_i^M} \Delta \log M_i^M \right), \]

where \(\Delta \log M_i^M = \log q_i^0 M_i^{M1} - \log q_i^0 M_i^{M0} \).

Labour input

\[\Delta \log L = \sum_i \left(\frac{p_i L_i}{\sum p_i L_i} \Delta \log L_i \right) \]

Capital input

\[\Delta \log K = \sum_k \left(\frac{p_i K_i}{\sum_k p_i K_i} \Delta \log K_k \right). \]

\(^9\) We assume volume changes in the elementary indices at basic prices and purchaser’s prices to be identical,
i.e. we assume the volume of the product tax to change at the same rate as the input on which it is paid.

\(^{10}\) Vartia (1976) defines an index number formula to be consistent in aggregation if the value of the index
calculated in two stages necessarily coincides with the value of the index calculated in and ordinary way, i.e.
in a single stage. According to Diewert (1978) superlative index numbers, however, are approximately con-
sistent in aggregation.
We use the following notation for value shares:

\[
\bar{\pi}_j^Q = \frac{q_j Q_j}{\sum_j q_j Q_j}, \quad \bar{\pi}_j^V = \frac{v_j V_j}{\sum_j q_j V_j}, \quad \bar{\pi}_j^Y = \frac{q_j Y_j}{\sum_j q_j Y_j}, \quad \bar{\pi}_{MQ} = \frac{\sum_i (1 + d_i) q_i M_i}{\sum_j q_j Q_j}, \quad \bar{\pi}_{MBQ} = \frac{\sum_i q_i M_i}{\sum_j q_j Q_j},
\]

\[
\bar{\pi}_{MQ} = \frac{\sum_i q_i^M M_i^M}{\sum_j q_j Q_j}, \quad \bar{\pi}_{MBQ} = \frac{\sum_i q_i^M M_i^M}{\sum_j q_j Q_j}, \quad \bar{\pi}_{LQ} = \frac{\sum_i p_i L_i}{\sum_j q_j Q_j},
\]

\[
\bar{\pi}_{KQ} = \frac{\sum_k p_k K_k}{\sum_j q_j Q_j}, \quad \bar{\pi}_Q = \frac{\sum_j v_j V_j}{\sum_j q_j Q_j}, \quad \bar{\pi} = \frac{\sum_j v_j V_j}{\sum_j q_j Q_j}.
\]

The rate of economy level TFP growth based on gross output obviously can be written as follows:

\[
\Delta \log T = \Delta \log Q - \bar{\pi}_{MBQ} \Delta \log MB - (\bar{\pi}_{MQ} \Delta \log M - \bar{\pi}_{MBQ} \Delta \log MB)
\]

(46)

\[
-\bar{\pi}_{MQ} \Delta \log M^M - (\bar{\pi}_{MBQ} \Delta \log M^M - \bar{\pi}_{MBQ} \Delta \log MB^M)
\]

\[
-\bar{\pi}_{LQ} \Delta \log L - \bar{\pi}_{KQ} \Delta \log K.
\]

Again the impact of the taxes on products is caught by the two terms in parenthesis on the RHS of equation (46).

To obtain a measure for the growth rate of deliveries to final demand at basic prices we first use equation (33) to express the rate of output growth as a Törnqvist index of deliveries to final demand on the one hand and of deliveries to intermediate uses on the other:

(47) \[\Delta \log Q = \bar{\pi}_Q \Delta \log Y + \bar{\pi}_{MBQ} \Delta \log MB.\]

And furthermore

(48) \[\Delta \log Y = (\bar{\pi}_Q)^{-1} \left(\Delta \log Q - \bar{\pi}_{MBQ} \Delta \log MB \right).\]

Multiplying both sides of equation (46) by the average share of deliveries of domestic output to final demand in total output yields, in view of equation (48), the following expression for the rate
of economy level TFP change based on the at the economy level double deflated deliveries to final
demand:

\[
\Delta \log \bar{T}_i = \Delta \log Y_i - (\bar{u}^{YQ})^{-1} (\bar{u}^{MQ} \Delta \log M - \bar{u}^{MQO} \Delta \log MB)
\]

(49) \[-(\bar{u}^{YQ})^{-1} \bar{u}^{MQO} \Delta \log MB^M + (\bar{u}^{YQ})^{-1} (\bar{u}^{MQ} \Delta \log M^M - \bar{u}^{MQO} \Delta \log MB^M)\]

\[-(\bar{u}^{YQ})^{-1} \bar{u}^{LO} \Delta \log L - (\bar{u}^{YQ})^{-1} \bar{u}^{KO} \Delta \log K\] .

The impact of the taxes on products are now represented by the second and forth terms on the RHS.

For Domar-aggregation both sides of equation (45) for each industry are multiplied by the fol-
lowing aggregation coefficients:

(50) \[C_j = (\bar{u}^{YQ})^{-1} \bar{u}^{Q}_j\]

Summing up across industries and subtracting the result from both sides of equation (49) for the
economy level produces, in view of equation (48), the following aggregation rule equation from the
industry level to the economy level:

\[
\Delta \log \bar{T} = (\bar{u}^{YQ})^{-1} \left[\sum_j \bar{u}^{Q}_j \Delta \log t_j + (\sum_j \bar{u}^{Q}_j \bar{u}^{MQO} \Delta \log M_j - \bar{u}^{MQO} \Delta \log M) + (\sum_j \bar{u}^{Q}_j \bar{u}^{MQO} \Delta \log M_j^M - \bar{u}^{MQO} \Delta \log M^M) + (\sum_j \bar{u}^{Q}_j \bar{u}^{LO} \Delta \log L_j - \bar{u}^{LO} \Delta \log L) + (\sum_j \bar{u}^{Q}_j \bar{u}^{KO} \Delta \log K_j - \bar{u}^{KO} \Delta \log K) \right]
\]

(51)

Rows 2-5 disappear if all the rates of growth of respective inputs as well as their shares in total
value of output are identical across industries. Identical prices do not make the reallocation terms to
disappear in the case of the Törnqvist indices.

Another possible measure of the growth rate of the deliveries to final demand is the one ob-
tained directly from the LHS of equation (33):

(52) \[\Delta \log \bar{F} = \sum_i \bar{u}^{Y}_i \Delta \log Y_i\.]
In this case the measure is based on the growth rates of single deflated deliveries to final demand. The difference between the two measures can be written as follows:

\[\Delta \log Y = \Delta \log Y - \left(\bar{u}_i^{\text{Y}}\right)^{-1}\left(\Delta \log Q - \bar{u}_i^{MBQ}\Delta \log MB\right). \]

To examine this difference in more detail we give the following expression for the double deflated industry (product) level deliveries to final demand:

\[\Delta \log Y_i^D = \left(\bar{u}_i^{\text{YQ}}\right)^{-1}\left(\Delta \log Q_i - \bar{u}_i^{MBQ}\Delta \log MB_i\right). \]

From equations (54) and (53) we obtain:

\[\Delta \log Y = \sum_i \bar{u}_i^{\text{Y}}\Delta \log Y_i - \sum_i \bar{u}_i^{\text{Y}}\left(\bar{u}_i^{\text{YQ}}\right)^{-1}\left(\Delta \log Q_i - \bar{u}_i^{MBQ}\Delta \log MB_i\right) \]

\[+ \sum_i \bar{u}_i^{\text{Y}}\left(\bar{u}_i^{\text{YQ}}\right)^{-1}\left(\Delta \log Q_i - \bar{u}_i^{MBQ}\Delta \log MB_i\right) - \left(\bar{u}_i^{\text{YQ}}\right)^{-1}\left(\Delta \log Q - \bar{u}_i^{MBQ}\Delta \log MB\right). \]

Obviously the difference between the two measures disappears only if the growth rates of output and deliveries to intermediate uses are identical for each of the industries (products). The second difference disappears only if the double deflated growth rates of deliveries to final demand are identical across industries (products).

Furthermore from equations (49) and (53) we get the economy level measure of the rate of TFP growth based on the single deflated deliveries to final demand as follows:

\[\Delta \log \bar{T} = \Delta \log \bar{T}^Y + \sum_i \bar{u}_i^{\text{Y}}\Delta \log Y_i - \left(\bar{u}_i^{\text{YQ}}\right)^{-1}\left(\Delta \log Q_i - \bar{u}_i^{MBQ}\Delta \log MB_i\right). \]

Remark 11. The Törnqvist index for the economy level rate of TFP growth based on the double deflated economy level deliveries to final demand depends besides the rates of industry level rates also on reallocation of inputs across industries. (equation 51). Reallocation term relating to an input disappears only if the growth rates of the input as well as its value shares in industry’s total output are identical across industries. The index based on the single deflated industry (product) level deliveries to final demand depends also on the reallocation of industry outputs between deliv-
eries to final demand and to intermediate uses as well as on the reallocation of deliveries to final demand across industries (products). (Equation 55).

The double deflated rate of growth of the industry level value-added is defined as follows:

\[
\Delta \log V_j = \left(\bar{\pi}_j^{\overline{rQ}}\right)^{-1} \Delta \log Q_j - \left(\bar{\pi}_j^{\overline{rQ}}\right)^{-1} \bar{\pi}_j^{M_Q} \Delta \log M_j - \left(\bar{\pi}_j^{\overline{rQ}}\right)^{-1} \bar{\pi}_j^{M_M} \Delta \log M_j^M.
\]

For the industry-level rate of TFP-change we thus get:

\[
\Delta \log t_j = \Delta \log V_j - \left(\bar{\pi}_j^{\overline{rQ}}\right)^{-1} \bar{\pi}_j^{L_Q} \Delta \log L_j - \left(\bar{\pi}_j^{\overline{rQ}}\right)^{-1} \bar{\pi}_j^{K_Q} \Delta \log K_j.
\]

This together with equations (45) and (57) yields the familiar relationship between the value added based and gross output based industry level measures:

\[
\Delta \log t_j = \left(\bar{\pi}_j^{\overline{rQ}}\right)^{-1} \Delta \log t_j.
\]

The economy level rate of value added growth, based on the production possibilities frontier, is defined as the weighted average of the industry level rates:

\[
\Delta \log \overline{V} = \sum_j \bar{\pi}_j^V \Delta \log V_j.
\]

The economy level rate of TFP growth is defined analogously to the industry level as follows:

\[
\Delta \log \overline{t} = \Delta \log V - \left(\bar{\pi}_j^{\overline{rQ}}\right)^{-1} \bar{\pi}_j^{L_Q} \Delta \log L - \left(\bar{\pi}_j^{\overline{rQ}}\right)^{-1} \bar{\pi}_j^{K_Q} \Delta \log K.
\]

Multiplying both sides of the equation (58) by \(\bar{\pi}_j^V\), adding up across industries and subtracting the result from both sides of (61) gives:
\[\Delta \log T^V = \sum_j \pi_j^V \Delta \log t_j \]
\[+ \left[\sum_j \pi_j^V \left(\pi_j^Q \right)^{-1} \pi_j^{LO} \Delta \log L_j - \left(\pi_j^Q \right)^{-1} \pi_j^{LO} \Delta \log L \right] \]
\[+ \left[\sum_j \pi_j^V \left(\pi_j^Q \right)^{-1} \pi_j^{KO} \Delta \log K_j - \left(\pi_j^Q \right)^{-1} \pi_j^{KO} \Delta \log K \right] \]

If the economy is treated as single unit of production with identical prices paid by all of the industries for all the inputs, however producing a number of different products, we have the following formula for the rate of economy level TFP growth:

\[\Delta \log T^V = \Delta \log V - \left(\pi^Q \right)^{-1} \pi^{LO} \Delta \log L - \left(\pi^Q \right)^{-1} \pi^{KO} \Delta \log K, \]

Where

\[\Delta \log V = \left(\pi^Q \right)^{-1} \Delta \log Q - \left(\pi^Q \right)^{-1} \pi^{MQ} \Delta \log M - \left(\pi^Q \right)^{-1} \pi^{MQ} \Delta \log M^M. \]

The difference between the two value added based economy level measures is:

\[\Delta \log T^V - \Delta \log T^V = \Delta \log V - \sum_j \pi_j^V \Delta \log V. \]

Remark 12. The Törnqvist index for the economy level rate of TFP growth based on the production possibilities frontier of the industries’ value added depends besides the industry level rates also on the reallocation of labour and capital inputs between industries. The Törnqvist index of TFP growth based on the economy level value added depends in addition to this also on the reallocation of value added by industries. These reallocation terms disappear only if the rates of growth of the respective inputs/value added as well as their value shares in industry’s total output are identical across industries (equations 62 and 65).
6. Calculations based on the Finnish data

The theoretical results were tested by an empirical experiment with the Finnish data for 1999 and 2000. There are several choices to be made in an empirical application. Each of them is likely to have an effect on the results of the calculations. The first choice is whether to use supply and use tables or symmetric input-output tables. We were using SIOTs since all our formulas are based on them.11

The second choice concerns the level of aggregation in the calculations as well as the level of aggregation in the deflation. E.g. the draft Eurostat Input-Output manual suggests the deflation to be performed at the lowest possible level. Our empirical exercise is based on the Finnish supply and use tables for 1999 and 2000, at current and fixed prices, with about 950 different products and about 180 industries. Deflation was, for the fixed price tables, originally performed, and the tables balanced, at this detailed level. But if deflation is performed at a more detailed level than the actual calculations then the basic price at a more aggregate level (i.e. its rate of change) can be different in different uses, because the aggregate level products in different uses consist of different baskets of the more detailed level products. Therefore we redeflated the tables at the level of 55 industries used in the calculation of the productivity measures.

The third choice concerns the price concept on which the deflator is based. E.g. in JGF (1987) outputs are valued at basic prices, to use the terminology of the SNA93, and inputs are valued at purchasers’ prices without trade and transport margins, in other words at basic prices plus taxes, net of similar subsidies, on products. Each industry’s output is deflated by its output deflator at basic price. The intermediate deliveries from an industry are deflated by an output deflator that includes the net taxes on products paid for that output. Including taxes net of subsidies on products in a deflator would require that the tax rate is the same in all uses of that product. In the case of the value added tax this is not normally true. Even in the case of the rest of the product taxes/subsidies there can be problems, since the product baskets in different uses consist of different detailed level products with, possibly, different tax rates. To be able to test our theoretical formulas we ended up deflating all the uses of the domestic output of an aggregate level product by its implicit output de-

11 The problem in adapting the formulas for supply and use tables is of course the possibility of joint production. The formulas based on production possibilities frontier for industry level value added could be adapted in line with Jorgenson, Ho and Stiroh (2004) by defining a uniform price for the output of each industry as well as the calculating the price index for each product using the industry shares as weights. The assumptions on which these calculations are based are of course similar to those used in the derivation of SIOTs from...
flator at basic price. Respectively all the uses of an aggregated level imported product were de-
flated by its average deflator at basic (c.i.f.) price in all its uses. The growth rates of the volumes of
product taxes on intermediate inputs were assumed to be equal to the growth rates of the volumes
of respective inputs.

The fourth choice concerns the index number formula. The results of the calculations based on
the nonadditive, but superlative Törnqvist indices are reported in Tables 1 and 2. Calculations
based on the additive Laspeyres indices as well as formulas for these calculations are reported by

Since the main purpose of our empirical exercise was to test our theoretical results concerning
the different approaches of aggregating the industry level measures to the economy level, we did
not make an effort to allocate our labour input to different categories. The labour compensation of
the self-employed was estimated on the basis of the hourly compensation of the employees in each
of the industries. The estimates depend, as of course could be expected, on the level of aggregation
of the industries. Likewise the different categories of fixes capital were suppressed in our calcula-
tions. Gross return on capital was calculated by subtracting from the operating surplus the esti-
mated labour compensation of the self-employed.

The results of the calculations are reported in Tables 1 and 2 and discussed in the concluding
remarks.

7. Concluding remarks

Our aim was to compare different approaches to the aggregation of industry level TFP measures
to the economy level. Special attention was paid to the implications of the existence of taxes and
subsidies on products. Both at the industry level and at the economy level different measures of
output growth were considered. The relationship of the two industry level TFP measures, the one
based on gross output and the one based on the double deflated value added, is simply determined
by the share of the value added in gross output.

At the economy level four different measures of output were distinguished: 1) deliveries of do-
mestic products to final demand based on single deflation, 2) deliveries of domestic products to
final demand based on double deflation at the economy level, 3) value added based on the produc-
tion possibilities frontier of the industries’ value added and 4) value added based on the production
function of the entire economy. From the results (Table 1) it is obvious that the choice of the mea-
ure of output matters in the estimation of the economy level rate of TFP growth. The results range

SUTs. Adapting the formulas for final demand approach would be more difficult, since it would be necessary
from 2.0 to 3.2. These differences are caused by the differences in definitions of the output measures. The deliveries to final demand approach resulted in much lower rates of TFP growth than the value added approach.

The difference between the two measures based on deliveries to final demand consists of the reallocation of industry outputs between deliveries to final demand and to intermediate uses and of the reallocation on deliveries to final demand across industries (table 2). The difference between the two measures based on value added is caused by the reallocation of value added across industries. The ratio of the measure based on the double deflated deliveries to final demand to the measure based on the economy level value added is, as expected, the inverse of the ratio of the respective shares in gross output. In this case the shares of course are calculated as averages of the shares in the years of comparison.

The net taxes on domestic products have slightly reduced the output growth measured by deliveries to final demand (table 1). The imported intermediate inputs have contributed substantially to the output growth measured by the deliveries to final demand of domestic products.

Reallocation of domestically produced intermediate products decreased the pace of TFP growth based on the deliveries to final demand while the reallocation of imported intermediate inputs added to it (table 2). But these effects were only partly due to the differences in the tax rates since there were reallocation effects also when the intermediate inputs were valued at basic prices. The economy level rates of TFP growth based on the value added do not directly depend on the reallocation of intermediate inputs. However the contribution of the reallocation of value added is partly due to the reallocation of intermediate inputs.

to keep the breakdown of the industries' output by product.
References

Table 1. Economy level TFP growth and contributions to the economy level growth of output, Törnqvist indices, per cent

<table>
<thead>
<tr>
<th>Measure of output</th>
<th>Deliveries to FD</th>
<th>Deliveries to FD, DD</th>
<th>Value added, IL</th>
<th>Value added, EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Growth of output</td>
<td>6,233</td>
<td>6,140</td>
<td>4,700</td>
<td>4,002</td>
</tr>
<tr>
<td>2 Domestic products in intermediate uses at pp</td>
<td>4,276</td>
<td>4,276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Domestic products in intermediate uses at bp</td>
<td>4,515</td>
<td>4,515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Net taxes on domestic products in intermediate uses (2-3)</td>
<td>-0,239</td>
<td>-0,239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Imported intermediate inputs at pp</td>
<td>3,256</td>
<td>3,256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Imported intermediate inputs bp</td>
<td>3,422</td>
<td>3,422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Net taxes on imported intermediate inputs</td>
<td>-0,166</td>
<td>-0,166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Labour</td>
<td>0,661</td>
<td>0,661</td>
<td>0,847</td>
<td>0,847</td>
</tr>
<tr>
<td>9 Capital</td>
<td>0,482</td>
<td>0,482</td>
<td>0,617</td>
<td>0,617</td>
</tr>
<tr>
<td>10 Economy level TFP growth (1-4-5-8-9)</td>
<td>2,074</td>
<td>1,981</td>
<td>3,236</td>
<td>2,538</td>
</tr>
</tbody>
</table>

Table 2. Contributions to the economy level TFP growth, Törnqvist indices, per cent

<table>
<thead>
<tr>
<th>Measure of output</th>
<th>Deliveries to FD</th>
<th>Deliveries to FD, DD</th>
<th>Value added, IL</th>
<th>Value added, EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Industry level TFP growth</td>
<td>1,891</td>
<td>1,891</td>
<td>2,527</td>
<td>2,527</td>
</tr>
<tr>
<td>2 Reallocation of (3+4+5+6+7)</td>
<td>0,182</td>
<td>0,090</td>
<td>0,708</td>
<td>0,010</td>
</tr>
<tr>
<td>3 - Final demand / Value added</td>
<td>0,093</td>
<td>-0,698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 - Intermediate uses of domestic products, pp (intermediate uses of domestic products, bp)</td>
<td>-0,580</td>
<td>-0,580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 - Intermediate uses of imported products, pp (intermediate uses of imported products, bp)</td>
<td>0,110</td>
<td>0,110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - Labour</td>
<td>0,265</td>
<td>0,265</td>
<td>0,332</td>
<td>0,332</td>
</tr>
<tr>
<td>7 - Capital</td>
<td>0,295</td>
<td>0,295</td>
<td>0,376</td>
<td>0,376</td>
</tr>
<tr>
<td>8 Economy level rate of TFP growth (1+2)</td>
<td>2,074</td>
<td>1,981</td>
<td>3,236</td>
<td>2,538</td>
</tr>
</tbody>
</table>