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E. Bárcena-Mart́ın1, and S. Pérez-Moreno2
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Abstract. In this paper we present a fuzzy multidimensional approach
for the measurement of the ‘leaving no one behind’ principle underlying
the Sustainable Development Goals (SDGs) in European countries. In
particular, we consider a two-step procedure. First, we compute the de-
gree to which an individual is ‘left behind’ in each specific dimension. We
then propose alternatives to measure the extent to which an individual
is ‘left behind’ in a multidimensional setting. We illustrate our proposal
taking as a reference the ‘at risk of poverty or social exclusion’ (AROPE)
framework (dimensions, indicators and union criteria). The results high-
light that although the average ‘left behind’ (LB) level and AROPE are
largely consistent across European countries, our fuzzy measure provides
valuable additional information, both in individual and aggregate terms,
on persons who are further away from those better positioned and how
far they are.
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1 Introduction

In 2015, world leaders adopted 17 Global Goals known as the Sustainable Devel-
opment Goals (SDGs; see [21]), which have the potential to end poverty, reduce
inequality and tackle climate change in 15 years, among other challenges. One
of the pillars of the 2030 Agenda for Sustainable Development and the SDGs,
and one which represents a critical improvement over the Millennium Develop-
ment Goals (MDGs), is the pledge to ‘leave no one behind’. In committing to the
realization of the 2030 Agenda for Sustainable Development, Member States rec-
ognized that the dignity of the individual is fundamental and that the Agenda’s
goals and targets should be met for all nations and people and for all segments
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of society. Furthermore, they endeavored to reach first those who are furthest
behind.

In making this pledge, the Sustainable Development Agenda has brought
inequalities to center stage. Numerous goals and targets include a focus on in-
equalities and the advancement of communities that have historically experi-
enced discrimination. Explicitly, goal 10 focuses on reducing inequalities within
and among countries, even though this goal is undermined and distorted by the
targets and indicators, which set an agenda for inclusion rather than for re-
ducing inequalities. The idea behind this goal is that a focus on absolute goals
obviates the need for relative indicators of inequality. For example, if countries
eliminate avoidable child deaths or achieve universal education, it follows that
no one has been left behind for that indicator. The problem is, however, that
growing inequality is compatible with overall progress in the transition towards
the absolute goal.

It should also be remembered that the revealing test for whether the SDGs
will truly ‘leave no one behind’ is not whether the SDG goals and targets include
such (aspirational) language, but whether this language will translate into the
implementation of the goals on the basis of equality and non-discrimination.
In that regard, monitoring will play an important role. As metrics pegged to
specific targets, indicators have the power to concentrate e↵ort and attention.
Moving beyond aggregate outcomes will require that the data related to these
indicators be disaggregated along lines able to meaningfully demonstrate the
existence, magnitude and interplay of multiple forms of inequalities. Moreover,
to leave no one behind, it is not enough to address the problems of those at the
bottom; we need to analyze inequality from an individual viewpoint. Thus, the
starting point requires a precise understanding and identification of those who
are left behind and to what extent.

This is precisely the issue this paper attempts to address. We use the fuzzy
approach to measure the degree to which an individual is left behind in a spe-
cific dimension, as well as alternatives to measure the degree an individual is
‘left behind’ from a multidimensional perspective. To this end, we follow [20],
who proposed that inequality can be viewed in terms of complaints of individuals
located at disadvantaged positions in the dimension under study. The society’s
highest values of the dimension in question are the reference point for all, and
everyone except the best positioned individuals have a legitimate complaint.
Consequently, a measure of the degree an individual is left behind is the sum
of his/her shortfalls from all persons better positioned than him/her in the di-
mension. This is a novel proposal that attempts to measure for the first time
the ‘left behind’ principle, allowing us to identify those left behind and quantify
how much they are left behind.

This procedure can be applied to any dimension. We present our proposal
by illustrating the ‘left behind’ principle in terms of multidimensional poverty,
specifically in relation to the concept of ‘at risk of poverty or social exclusion’
(AROPE). This is another significant novelty of our investigation. Even though
there are di↵erent proposals in the literature to measure poverty using a fuzzy



approach (see [18] for a review), to the best of our knowledge there is no attempt
in the literature to measure the ‘left behind’ principle with a fuzzy approach.
In this regard, as an indicator of multidimensional poverty, AROPE contains
three dimensions (two continuous dimensions and a discrete one) that allow us
to illustrate the distinctive features of our proposal in both types of dimensions,
and to propose alternatives to the joint measurement of dimensions. We illustrate
our proposal with the measurement of ‘left behind’ in multidimensional poverty
for 26 European countries (EU–28 countries except Bulgaria, Croatia, Malta and
Romania, plus Iceland and Norway) in the years 2006 and 2016 using European
Statistics on Income and Living Conditions (EU–SILC) microdata. The empirical
illustration highlights the significant advantages of the fuzzy measurement of the
‘leaving no one behind’ principle in terms of multidimensional poverty.

The paper is structured as follows. AROPE and the basic concepts of fuzzy
sets are introduced in the next section. The methodology and our contribution
are then described in section 3. The results of the empirical illustration are
presented and discussed in section 4. Finally, section 5 concludes.

2 AROPE and fuzzy multidimensional poverty

In the conventional approach, poverty is characterized by a dichotomization of
the population into the poor and the non-poor, which are defined in relation
to some chosen poverty line. Poverty may be defined, for instance, as a certain
percentage (50, 60 or 70%) of the mean or the median of the equivalized income
or consumption distribution. However, poverty is a complex phenomenon that
cannot be reduced solely to the monetary dimension and must also take into
of non-monetary indicators of living conditions. In order to capture the mul-
tidimensional nature of poverty, the AROPE indicator was developed in 2010.
Since then, it constitutes the pivotal indicator of living conditions and poverty
in the EU. This multidimensional indicator was thought to be more appropriate
than just considering the monetary indicator based solely on relative income.
AROPE combines three facets already computed by the EU before 2010: at risk
of poverty, material deprivation and low work intensity of households. The first
is the standard EU at risk of poverty rate, which identifies if an individual has
an equivalized3 disposable income below the at-risk-of-poverty threshold, set at
60% of the national median equivalized disposable income. The second is severe
material deprivation and refers to a state of economic strain and durables, de-
fined as the enforced inability to pay unexpected expenses; a↵ord a one-week
annual holiday away from home; a meal involving meat, chicken or fish every
second day; the adequate heating of a dwelling; durable goods like a washing
machine, color television, telephone or car; being confronted with payment ar-
rears (mortgage or rent, utility bills, hire purchase instalments or other loan
payments). In particular, the severe material deprivation variable expresses the

3 EUROSTAT recommends the use of the OECD modified equivalence scale to com-
pute equivalent units. This scale attaches a value of 1 to the first adult in the
household, 0.5 to each remaining adult, and 0.3 to each member younger than 14.



inability to a↵ord at least four of nine items considered by most people to be
desirable or even necessary to lead an adequate life. The third variable, low
work intensity, identifies if a person is living in a household where the members
of working age worked less than 20% of their total potential during the income
reference period. A working-age person is a person aged 18–59 years, with the
exclusion of students in the 18-24 year old age group.

Combining these three distinct dimensions, an individual is considered to
be at risk of poverty or social exclusion if he or she is at risk of poverty, or is
severely materially deprived or lives in a household with low work intensity. In
other words, the indicators are used to identify the target group so that meeting
any of the three criteria su�ces for an individual to be included among those
counted as poor or socially excluded.

Nevertheless, it is obvious that in reality multidimensional poverty is not
an attribute that characterizes an individual in terms of his or her presence or
absence (see, for example, [24] and [7]), but is rather a predicate that manifests
itself in varying shades and degrees (ambiguity). Thus, the fuzzy approach allows
us to consider multidimensional poverty as a matter of degree rather than an
attribute that is simply present or absent for individuals in the population.
Moreover, once we consider that multidimensional poverty is not a dichotomous
attribute, we can identify those who are further away from the better positioned
individuals and how far they are. We make use of the fuzzy approach, therefore,
to measure the degree of multidimensional poverty of each individual and to
gauge how far they are ‘left behind’.

Let us recall, in line with [23], that one of the main ideas of the fuzzy systems
theory is that, in addition to ‘fully belonging’ (truth value 1) and ‘fully not
belonging’ (truth value 0), there can also be other cases (other truth values) of
an element belonging to a fuzzy set. Hence, being a member of a fuzzy set is a
graded property. This is contrary to the principle of bivalence which states that
a property either applies to an element or does not.

A number of results can be found in the literature concerning fuzzy multi-
dimensional poverty (see [4] and [18] for a review). Some authors have intro-
duced alternative approaches guided by the duality of poverty (see, for instance,
[13,?,?]). Additionally, in [6] and [9, chapter 4], Bourguignon and Chakravarty
have contributed to the development of an axiomatic methodology with diverse
fuzzy set approaches to the measurement of multidimensional poverty.

Apart from the fuzzy axiomatic approaches, other authors, far from the works
previously mentioned, have introduced the fuzzy approach in di↵erent ways.
For example, Cerioli and Zani [8] proposed a fuzzy approach for the monetary
dimension of poverty where the membership function of the fuzzy set is defined
as a transition zone between two states of poverty; a zone over which there was
a very simple linear function of the monetary variable between zero and one.

Later, Betti et al. [2] proposed a membership function that combines their
previous membership functions (see [3], [10], [11], [12]). Called the Fuzzy Mone-
tary Incidence, this indicator takes into account: (1� F (xi)) membership func-
tion, which represents the proportion of individuals with income greater than the



income of individual i, where F (xi) is the distribution function and (1�L(F (xi)))
is the membership function that represents the income share of those with an
income greater than the income of individual i, where L(F (xi)) is the value of
the Lorenz curve for the individual i. They define this measure as µ : U ! [0, 1],

µ(i) = (1� F (xi))
↵(1� L(F (xi))) for all i 2 U, (1)

where U is the population set, xi is the equivalized income of individual i and
↵ is a parameter.4

In this paper we propose a definition of fuzzy sets that captures the shortfall
of individuals with respect to those with a better position, which is based on
the widely known concept of relative deprivation of an individual i introduced
by [19] and [22].

Hey and Lambert [19] define the relative deprivation of individual i with
income xi with respect to another individual j with income xj as the following
linear function

P (xi, xj) =

⇢
xj � xi if xj � xi

0 if xj  xi

(2)

Using the above concept, these authors define the mean deprivation of an
individual i with income xi as follows:

Definition 1. Let U be the population set, ⌘ be the average income of U and F

be the income distribution function. The mean deprivation of individual i with
income xi is defined as follows:

P (xi) =

Z +1

�1
P (xi, xj) dF (xj) = ⌘(1� L(F (xi)))� xi(1� F (xi)) (3)

where P (xi, xj) is defined by Equation (2) for all i, j 2 U and L(F (xi)) is the
value of the Lorenz curve for income xi.

It is worth noting that the fuzzy sets defined in our analysis combine the
information contained in the distribution function and the Lorenz curve in a
way that has meaning in itself. It measures the ‘left behind’ notion as it is
the sum of the shortfalls of each individual with respect to those who are better
positioned. Moreover, the average of such individuals’ shortfalls is the well-known
Gini index5 of inequality.

4 The arbitrary parameter ↵ may be chosen, for example, so that the mean of µ(i)
equals the head count ratio H. For a detailed review of the definition of functions
and parameter ↵, see, for instance, [2], [3], [4], [10] and [11].

5
G =

PN
i

PN
j |xi�xj |

2N2⌘
, where N is the size of the population set and xi, xj 2 X are the

values of the variable for individuals i and j, respectively.



3 Methodology

3.1 Preliminary definitions

As an underlying structure for considering the generalization to a fuzzy frame-
work, we will consider a complete residuated lattice L = (L,,⌦,!, 0, 1), that
is, an algebra where (L,, 0, 1) is a complete lattice, the least element is 0 and
the greatest element is 1, (L,⌦, 1) is a commutative monoid and (⌦,!) is an
adjoint couple (x  y ! z i↵ x ⌦ y  z) for all x, y, z 2 L ( denotes the
lattice ordering).6 We will denote the supremum and infimum operation in the
lattice with the symbols _ and ^ , respectively.

An L-fuzzy set on U is a mapping A : U ! L where A(u) is called the degree
of membership of u in A.

The set of all L-fuzzy7 sets on U is denoted by L
U . Let A,B 2 L

U :

i) A is said to be included in B, denoted as A ✓ B if A(u)  B(u) for all u 2 U .
ii) The union (resp. intersection) of A and B is defined as the fuzzy set (A [

B)(u) = A(u) _B(u) (resp.(A \B)(u) = A(u) ^B(u)) for all u 2 U .
ii) The multiplication (resp. implication) of A and B is defined as the fuzzy set

(A⌦B)(u) = A(u)⌦B(u) (resp. (A ! B)(u) = A(u) ! B(u)) for all u 2 U .

For n 2 N, we denote the n-power of a 2 L with respect to ⌦ by a
⌦n i.e.

a
⌦n = a⌦ a...⌦ a (n-times). The formal definition is as follows:

Definition 2. Let L = (L,,⌦,!, 0, 1) be a residuated lattice. For a nonnega-
tive integer n, the n-power of a 2 L is defined by a

0 = 1 and a
⌦n+1 = a

⌦n ⌦ a.

Let us now turn our attention to the residuated lattices defined on L = [0, 1]
and recall the following concepts which can be found in [1].

Definition 3. A t-norma is a binary operation on [0, 1] which is associative,
commutative, monotone, and with 1 acting as its unit element, i.e., ⌦ is a map-
ping ⌦ : [0, 1]⇥ [0, 1] ! [0, 1] satisfying (x⌦ y)⌦ z = x⌦ (y⌦ z), x⌦ y = y⌦ x,
y1  y2 implies x⌦ y1  x⌦ y2 and x⌦ 1 = x.

The following technical lemma shows that it is possible to define the r-power
of a 2 [0, 1] with respect to ⌦ for any positive rational number r.

Lemma 1 ([1]). For a t-norma that verifies elements 0 and 1 as its only idem-
potents (i.e., a⌦ a < a for any 0 6= a 6= 1), we have:

i) if 0 < a
⌦n

< 1 and n < m then a
⌦m

< a
⌦n for all n,m 2 N;

ii) for each positive a < 1 and each n 2 N there is a unique b such that b⌦n = a.

The above lemma (item ii) justifies the following definition.

Definition 4. For a > 0, a⌦
1
n is the unique b such that b⌦n = a; 0⌦

1
n = 0. For

positive integers m,n and rational r = m

n
, we define a

⌦r = (a⌦
1
n )⌦m.

6 For more details, see, for example, [1], [5] and [17].
7 From now on, when no confusion arises, we will omit the prefix L.



3.2 Fuzzy dimensional measure

In this subsection, we describe the fuzzy methodology for the construction of
measures of ‘left behind’ in terms of multidimensional poverty. We consider a
two-step procedure. We first compute the degree to which the individual is ‘left
behind’ in a specific dimension of poverty, then aggregate across dimensions for
each individual. The analysis of multidimensional poverty involves diverse infor-
mation from very di↵erent kinds of data. In particular, the main purpose of this
subsection is to define fuzzy sets for a given dimension (whether continuous or
non-continuous). First, we focus on the definition of fuzzy set for a continuous
dimension. The idea underlying the construction of the measure is a transforma-
tion of the concept of the mean relative deprivation for individual i introduced
in Definition 1.

Definition 5. Let L = (L,,⌦,!, 0, 1) be a complete residuated lattice and h

be a continuous dimension. Given a population set U , for each individual i 2 U ,
the fuzzy set fh is defined as the mapping fh : U ! L where

fh(i) =
P (xh,i)

⌘h
= (1� L(F (xh,i))�

xh,i

⌘h
(1� F (xh,i))

where xh,i is the value of the continuous dimension h for individual i and ⌘h is
the average of xh.

Thus, for h being income (work intensity), fh(i) represents the degree the
individual i 2 U is ‘left behind’ in terms of monetary poverty (work intensity).

Remark 1. Note that in this paper we consider that the value of the continuous
dimension h for individual i is nonnegative.

Proposition 1. Let U be a population set, L be a complete residuated lattice and

h be a continuous dimension. Then, the map fh : U ! L, where fh(i) =
P (xh,i)

⌘h

verifies that 0  fh(i)  1 for all i 2 U .

Proof. P (xh,i) defined in Definition 1. Consider i 2 U and let us prove that

0  (1� L(F (xh,i))�
xh,i

⌘h
(1� F (xh,i))  1,

By definition of F and L, we have that

0  (1� F (xh,i))  1, (4)

0  (1� L(F (xh,i)))  1, (5)

(1� F (xh,i))  (1� L(F (xh,i))). (6)

Using equations (4) and (5) and the fact that xh,i

⌘h
� 0 for all i 2 U , we obtain

that (1�L(F (xh,i))� xh,i

⌘h
(1� F (xh,i)))  1�L(F (xh,i))  1 for all i 2 U . On

the other hand, it is straightforward that P (xh,i) � 0 by Definition 1 and by
Equation (2). ut



Proposition 2. Let U be a population set, L a complete residuated lattice and
h a continuous dimension. Consider the mapping fh : U ! L such that fh(i) =
P (xh,i)

⌘h
, if xh,i  xh,j then fh(j)  fh(i) for all i, j 2 U.

Proof. Consider i, j 2 U such that xh,i  xh,j and let us prove that P (xh,j)
⌘h


P (xh,i)

⌘h
.

By definition of F and Remark 1, we have

� xh,j

⌘h
(1� F (xh,j))  �xh,i

⌘h
(1� F (xh,j)), (7)

and
� xh,i

⌘h
(1� F (xh,i))  �xh,i

⌘h
(1� F (xh,j)). (8)

Now, subtracting equations (7) and (8) we obtain

� xh,j

⌘h
(1� F (xh,j))  �xh,i

⌘h
(1� F (xh,i) (9)

Therefore, using first equation (9) and second the fact that 1�L(F (xh,j)) 
1� L(F (xh,i)), we have

(1� L(F (xh,j)))�
xh,j

⌘h
(1� F (xh,j)) 

(1� L(F (xh,j)))�
xh,i

⌘h
(1� F (xh,i)) 

(1� L(F (xh,i)))�
xh,i

⌘h
(1� F (xh,i).

Therefore, fh(j)  fh(i) for all i, j 2 U . ut

Example 1. We consider that the population set U = {1, 2, 3} and h is a con-
tinuous dimension, specifically the income of individuals in the population, as
described in the following table:

Individual xh,i fh(i)
i = 1 300 0.2
i = 2 500 0
i = 3 200 0.4

Therefore, the fuzzy set above is described in such a way that the individuals
i = 1, i = 2 and i = 3 are left behind in monetary poverty with degrees of 0.2,
0 and 0.4, respectively.

The second part of this section is devoted to considering the case of a non-
continuous dimension such as material deprivation following the same procedure
as in [4]. This variable can be described by categories with di↵erent symptoms.
These categories indicating material deprivation often take the form of simple



‘yes/no’ dichotomies (such as the presence or absence of enforced lack of certain
goods or facilities) and sometimes ordered polytomies. Therefore, the starting
point for studying non-continuous dimensions in deprivation analysis is the selec-
tion of di↵erent deprivation categories (j 2 {1, 2, ...k}) with their symptoms. A
numerical value (rank) is assigned to each deprivation symptom (c 2 {1, 2, ..., n})
where the deprivation symptoms are arranged from the most deprived (c = 1)
to the least deprived (c = n) situation.8

Considering the previous statements, we focus on the transformation of non-
continuous dimensions into continuous dimensions, since we intend to use the
definition of fuzzy set given in Definition 5 for any type of dimension. The crux
of the transformation is related to the definition of a number (a score) which
collects all the information of the di↵erent deprivation categories with their
di↵erent deprivation symptoms. The steps for any non-continuous dimension h

are as follows:

1. For each deprivation category we determine a deprivation score that is de-
fined as follows:

Definition 6 ([12]). Let U be a population set and h a non-continuous
dimension with deprivation categories j 2 {1 . . . kh}. Consider the ordered set
of deprivation symptoms of each category j, ch,j 2 {1, 2, . . . , nj}, where the
most deprived is ch,j = 1 and the least deprived is ch,j = nj. The deprivation
score in category j for individual i in the non-continuous dimension h is
defined as follows

eh,j,i =
1� F (ch,j,i)

1� F (1)
(10)

where F (ch,j,i) is the value of the j-th category distribution function for the
i-th individual in dimension h.

We use this transformation as we cannot calculate the shortfalls with respect
to ‘better o↵’ individuals because the value of the symptom has no meaning
in itself. What we capture is the proportion of individuals that are ‘better
o↵’ than individual i.
Note that the above formulation for eh,j,i is identical for the most common
case, the dichotomous case, where eh,j,i = 1 (deprived) or eh,j,i = 0 (non-
deprived).

2. We collect the information in an overall deprivation score that indicates
the deprivation of each individual of the population in the specific non-
continuous dimension. For this purpose, we define a weighting system in
the dimension (inspired by [4] and [18]) that assigns a specific weight to

8 For example, we study two deprivation categories (j = 1, 2). The first category, ‘to
have a car’ (j = 1), has two deprivation symptoms: one for not having a car (c = 1)
and another for having a car (c = 2). The second category, ‘defaults home mortgage
loan’ (j = 2), has three deprivation symptoms: one for defaults for more than sixth
months (c = 1), another one for defaults for one month (c = 2) and the last one for
no default (c = 3).



each category j. Before stating the following definitions, let us introduce the
notation as follows:

Notation 1 Let X1, ..., Xk be k variables. We will use the following nota-
tion: for all j 2 {1, ..., k}

R
2
Xj , X�j

= R
2
Xj ,X1,...,Xi�1,Xi+1,...,Xk

,

where R2
Xj ,X1,...,Xi�1,Xi+1,...,Xk

is the well-known coe�cient of determination
for a multiple linear regression model in which Xj is the dependent variable
and X1, ..., Xj�1, Xj+1, ..., Xk are the independent variables.

In order to combine information from di↵erent categories into one measure of
individual deprivation, we compute weighted averages of the eh,j,i for each
individual. The weights of each category should have an inverse relation
to the deprivation score in the category (see [18]), so that less frequent
deprivation obtains higher weights. At the same time, categories that provide
redundant information should be penalized (see [4] for an alternative way
of taking this into consideration). Taking these two premises in mind, we
define:

Definition 7. Let U be a population set and h be a non-continuous dimen-
sion. We define the weight wh,j = w

a

h,j
w

b

h,j
, where

– w
a

h,j
= 1�

NX

i=1

eh,j,i

N
for all j = 1, 2, . . . , kh and for all i 2 U .

– and w
b

h,j
= 1�R

2
eh,j,i, eh,�j,i

for all j = 1, 2, . . . , kh and for all i 2 U .

w
a

h,j
attaches more weight to categories in which the proportion of individuals

of the population with deprivation in category j is smaller.
And, w

b

h,j
captures the proportion of the variance for a dependent vari-

able (category j) that is not explained by independent variables (categories
1, . . . , j � 1, j + 1, . . . , kh in a linear multiple regression model). That is, we
attach less weight to categories with redundant information.

3. Finally, using the above weighting system, we define the deprivation score
for each individual of the population.

Definition 8. Let U be the universe set and h a non-continuous dimen-
sion with j 2 {1, . . . , kh} deprivation categories. The deprivation score for
individual i is given by

eh,i =

khX

j=1

wh,jeh,j,i

khX

j=1

wh,j

for all i 2 U , j 2 {1, 2, . . . , kh}.



Note that in Definition 8, if eh,i = 1, individual i 2 U has the maximum
deprivation score in dimension h and if eh,i = 0, individual i 2 U has no-
deprivation in dimension h.

To better understand the di↵erent notions and definitions introduced in the
possible composition of a non-continuous dimension, we illustrate it by means
of a toy example.

Example 2. Let U = {1, 2, 3} be a population set. Let h be the material depri-
vation dimension (non-continuous) with two deprivation categories (j 2 {1, 2}).
The category ‘to have a car’ (j = 1) has two deprivation symptoms: one of them
for not having a car (c = 1) and another one for having a car (c = 2). The cat-
egory ‘defaults home mortgage loan’ (j = 2) has three deprivation symptoms:
one for defaults for more than sixth months (c = 1), another one for defaults for
one month (c = 2) and the last one for no default (c = 3).

The deprivation scores for each individual in each of the categories are as
follows:

Individual ch,1,i ch,2,i eh,1,i eh,2,i
i = 1 1 2 1 0.5
i = 2 2 3 0 0
i = 3 1 1 1 1

The weighting system is the following products of w
a

h,j
and w

b

h,j
for each

deprivation category j 2 {1, 2},

Deprivation category w
a

h,j
w

b

h,j
wh,j

j = 1 0.33 0.25 0.08
j = 2 0.5 0.25 0.13

Therefore, we calculate the deprivation score for each individual as follows:

Individual eh,i
i = 1 0.7
i = 2 0
i = 3 1

We can say that individual 3 has the maximum deprivation score, while 2 is
not deprived from h and individual 1 has a deprivation score of 0.7.

Remark 2. Note that, from Proposition 2, for example, if there exist two indi-
viduals with di↵erent incomes, then the individual with the smallest income has
a larger degree of monetary poverty than the other individual. As expected, this
property of these fuzzy sets is preserved for all continuous dimensions.

However, bear in mind that in a non-continuous dimension the greater eh,i,
the greater the deprivation score of the dimension (fh(i)). In order to standardize
with the continuous dimension, we transform the score eh,i as follows:

xh,i = 1� eh,i.



Then, we would apply the fuzzy set defined in Definition 5 to xh,i.
Let us finish this subsection with an example.

Example 3. For the material deprivation dimension h and the population U

given in Example 2, the fuzzy set fh (defined by Definition 5) that represents
the degree an individual is left behind in dimension h is as follows:

Individual eh,i xh,i fh(i) =
P (xh,i)

⌘h

i = 1 0.7 0.3 0.54
i = 2 0 1 0
i = 3 1 0 1

3.3 Fuzzy multidimensional measure

In the previous sections we considered each dimension of the study of multidi-
mensional poverty independently as a fuzzy set.

In this section, we tackle the next step of interest in multidimensional anal-
ysis and aggregate across dimensions for each individual, thus permitting an
unambiguous ranking of individuals in the population.

Fuzzy set operations are a generalization of the corresponding crisp set oper-
ations in the sense that the former exactly reproduce the latter (see, for example,
Section 3.1). This confirms that there is more than one way to formulate a com-
posite indicator of multidimensional poverty with fuzzy sets.

The choice of alternative formulations has to be based primarily on substan-
tive grounds: depending on the context and objectives of the application, some
options are more appropriate than others.

The proposed measurement framework in this study is generic in the sense
that it can be used to summarize performances in any policy setting. We follow
the philosophy of AROPE to define the overall measure of the degree to which
an individual is ‘left behind’ in multidimensional poverty. We consider that given
that the three dimensions of AROPE do indeed capture di↵erent categories of
deprivation, we will use the union of fuzzy sets as an aggregation measure.

Definition 9. Let h 2 {1...H} be dimensions, U the population set and ([0, 1],
,⌦,!, 0, 1) the residuate lattice. Let fh be the fuzzy set of dimension h from
Definition 5.

The mapping ↵ : U ! [0, 1] is called the degree an individual is ‘left behind’
regarding the dimension h 2 {1...H} and is defined as follows:

↵(i) = (
H[

h=1

fh)(i) =
H_

h=1

fh(i)

for all i 2 U .

An individual i 2 U is totally ‘left behind’ in multidimensional poverty if
↵(i) = 1 and he/she is at the bottom of the ranking. Individual i 2 U is not ‘left
behind’ at all if ↵(i) = 0, that is, he/she leads the ranking.



Let us think of a specific situation in which dimensions can be weighted
di↵erently depending on the country context. In this case, the definition of the
fuzzy set which measures the degree an individual is ‘left behind’ regarding the
multidimensional analysis is as follows:

↵
⇤(i) = (

H[

h=1

f
⌦�h,C

h
)(i) =

H_

h=1

(fh(i)
⌦�h,C )

for all i 2 U , where �h,C is the weight of the dimension h in country C.
Note that it is straightforward that 0  ↵

⇤(i)  1 for all i 2 U .
An example is worked out below to illustrate the previous situation.

Example 4. We consider the population set U = {1, 2, 3} and study the degree an
individual is ‘left behind’ in terms of multidimensional poverty. In this case, we
consider two dimensions: dimension h = 1 defined in Example 1 and dimension
h = 2 defined in Example 2. Specifically,

Individual f1(i) f2(i) ↵(i)
i = 1 0.2 0.54 0.54
i = 2 0 0 0
i = 3 0.4 1 1

We can say that individual 3 with degree 1 is the most ‘left behind’ in terms of
multidimensional poverty, that is, he or she is the worst o↵, while individual 2
is not ‘left behind’ at all and is the best o↵, and individual 1 is ‘left behind’ in
terms of multidimensional poverty with degree 0.54.

4 Empirical analysis

This section reports the empirical results of the average ‘left behind’ (LB) level
in terms of multidimensional poverty for 26 European countries based on the
EU–SILC 2006, 2011 and 2016 dataset ([14], [15] and [16]).9 This dataset in-
cludes timely and comparable cross-sectional and longitudinal multidimensional
microdata on income, poverty, social exclusion and living conditions. It is cur-
rently the main source of information on living standards in the EU and is based
on a common framework with a common set of target variable definitions and
rules. The years have been chosen to highlight changes over a decade starting
before and ending after the period of economic crisis.

Let us recall that the AROPE multidimensional poverty indicator includes
three facets: at risk of poverty, severe material deprivation and low work inten-
sity of households. Combining these three distinct dimensions, an individual is

9 We analyze data on 132, 323 households in 2006, 126, 863 households in 2011 and
130, 121 households in 2016. Households composed only of children, of students aged
less than 25 and/or people aged 60 or more are completely excluded from the in-
dicator calculation. Additionally, we eliminate households from the sample that did
not provide information on one or more of the dimensions. Table A1 in the appendix
shows the number of observations by country and year.



considered to be at risk of poverty or social exclusion if he or she is at risk of
poverty, or is severely materially deprived or lives in a household with very low
work intensity. Thus, the measure only checks whether a person satisfies achieve-
ment in the dimension or not. From this multidimensional poverty perspective,
an individual may be at risk of poverty or social exclusion in one or more dimen-
sions, not taking into consideration the number of dimensions and degrees in
which the person falls short. As explained above, we propose to complement and
extend the information provided by the AROPE rate by using a fuzzy approach
that allows us to identify those who are further away from the better positioned
individuals and how far they are. Table 1 reports the results of the LB and the
AROPE rate considering the three dimensions of poverty used by EUROSTAT
for the years 2006, 2011 and 2016.

Table 1. LB and AROPE rate for 2006 and 2016 by country

2006 2011 2016
Country LB rank AROPE rank LB rank AROPE rank LB rank AROPE rank

PL 0.4436 (1) 0.4098 (1) 0.3941 (10) 0.2848 (7) 0.3800 (10) 0.2467 (8)
LV 0.4217 (2) 0.3786 (2) 0.4393 (1) 0.4255 (1) 0.3852 (8) 0.2398 (10)
HU 0.4202 (3) 0.3261 (4) 0.3861 (11) 0.3496 (2) 0.3667 (14) 0.2850 (4)
PT 0.4150 (4) 0.2184 (10) 0.3973 (7) 0.2374 (10) 0.3908 (7) 0.2423 (9)
LT 0.4091 (5) 0.3451 (3) 0.4239 (3) 0.3356 (3) 0.4298 (3) 0.2847 (5)
EL 0.4036 (6) 0.2688 (5) 0.4145 (5) 0.3081 (4) 0.4513 (1) 0.3837 (1)
UK 0.4007 (7) 0.2407 (8) 0.4009 (6) 0.2245 (11) 0.3926 (6) 0.2385 (11)
IE 0.3992 (8) 0.2211 (9) 0.4385 (2) 0.2958 (5) 0.4014 (5) 0.2476 (7)
IT 0.3975 (9) 0.2531 (7) 0.3965 (8) 0.2877 (6) 0.4067 (4) 0.3072 (2)
BE 0.3756 (10) 0.2004 (13) 0.3642 (14) 0.2046 (15) 0.3635 (16) 0.2086 (12)
DE 0.3744 (11) 0.2064 (11) 0.3702 (13) 0.2016 (16) 0.3655 (15) 0.1887 (18)
EE 0.3741 (12) 0.1989 (15) 0.3959 (9) 0.2464 (9) 0.3697 (12) 0.1963 (16)
ES 0.3684 (13) 0.2042 (14) 0.4200 (4) 0.2734 (8) 0.4328 (2) 0.3052 (3)
NO 0.3594 (14) 0.1622 (24) 0.3109 (25) 0.1599 (25) 0.3300 (21) 0.1777 (22)
NL 0.3557 (15) 0.1720 (22) 0.3357 (20) 0.1749 (23) 0.3512 (18) 0.1755 (23)
SK 0.3547 (16) 0.2684 (6) 0.3398 (18) 0.2182 (12) 0.3158 (25) 0.1920 (17)
LU 0.3545 (17) 0.1760 (19) 0.3509 (16) 0.1883 (20) 0.3715 (11) 0.2071 (13)
FR 0.3540 (18) 0.1854 (17) 0.3766 (12) 0.2113 (13) 0.3518 (17) 0.2059 (14)
AT 0.3407 (19) 0.1792 (18) 0.3449 (17) 0.1903 (19) 0.3445 (20) 0.1872 (19)
FI 0.3381 (20) 0.1632 (23) 0.3388 (19) 0.1796 (22) 0.3482 (19) 0.1731 (24)
CZ 0.3379 (21) 0.1877 (16) 0.3289 (23) 0.1632 (24) 0.3222 (24) 0.1384 (25)
DK 0.3325 (22) 0.1720 (21) 0.3565 (15) 0.1955 (18) 0.3676 (13) 0.1969 (15)
SI 0.3291 (23) 0.1603 (25) 0.3311 (22) 0.1864 (21) 0.3279 (22) 0.1811 (21)
CY 0.3262 (24) 0.1990 (14) 0.3276 (24) 0.2062 (14) 0.3844 (9) 0.2685 (6)
SE 0.3132 (25) 0.1746 (20) 0.3321 (21) 0.1985 (17) 0.3278 (23) 0.1844 (20)
IS 0.2968 (26) 0.1263 (26) 0.3017 (26) 0.1488 (26) 0.2898 (26) 0.1348 (26)

Source: Eurostat country code used in EU–SILC (2006), EU–SILC (2011) and EU–SILC (2016)

The countries in Table 1 are ranked in descending order according to LB for
2006. That is, those countries in which people are more ‘left behind’ in terms
of multidimensional poverty are ranked first. The greater and closer LB is to
1, the more pressing the problem of leaving people behind. This problem was
especially significant in Poland, Latvia and Hungary in 2006; in Latvia, Ireland
and Lithuania in 2011; and in Greece, Spain and Lithuania in 2016. Moreover,
the AROPE rate is also high in these countries. Hence, both the crisp and the
fuzzy approach lead us to a similar conclusion in these countries and years. In
particular, we observe that the LB ranking is similar to the AROPE ranking for
the three years analyzed, with positive and significant Spearman rank correla-
tion statistics equal to 0.8338, 0.8749 and 0.8824, correspondingly. Nevertheless,



we should not forget that while AROPE informs about the extension of mon-
etary poverty, LB incorporates information on the depth of multidimensional
poverty and allows us to evaluate the ‘leaving no one behind’ notion in terms
of multidimensional poverty. In this sense, we also find, for instance, that the
AROPE ranking is better than the LB ranking for some countries. This is the
case of Norway and the Netherlands in 2006, or Finland and the Netherlands
for 2016, which are among the four lowest values of AROPE but move at least 7
positions in the LB ranking. In these countries, there are people who are falling
behind, even though the countries are above the thresholds of multidimensional
poverty, thus highlighting that there is a significant problem of socioeconomic
inequality. Likewise, there are other countries where even though the AROPE
rate is high, the problem of leaving people behind is not as pressing as in other
countries with lower AROPE rates. This is the case of Cyprus and Slovakia in
2006, Hungary and Cyprus in 2011, and Hungary and Slovakia in 2016.

Table 2. Change in LB and AROPE rate for 2006, 2011 and 2016 by country

Change 2006� 2016 Change 2006� 2011 Change 2011� 2016
Country LB AROPE LB AROPE LB AROPE

PL �0.0636⇤ �0.1631⇤ �0.0495⇤ �0.1251⇤ �0.0140⇤ �0.0381⇤
LV �0.0365⇤ �0.1388⇤ 0.0176⇤ 0.0469⇤ �.00541⇤ �0.1857⇤
HU �0.0535⇤ �0.0411⇤ �0.0340⇤ 0.0235⇤ �0.0195 �0.0646⇤
PT �0.0242⇤ 0.0239⇤ �0.0177⇤ 0.0190 �0.0065 0.0049
LT 0.0208⇤ �0.0604⇤ 0.0148 �0.0095 0.0059⇤ �0.0508
EL 0.0477⇤ 0.1149⇤ 0.0108⇤ 0.0393⇤ 0.0369⇤ 0.0756⇤
UK �0.0080⇤ �0.0022⇤ 0.0003⇤ �0.0162 �0.0083 0.0140⇤
IE 0.0043 0.0259 0.0393⇤ 0.0746 �0.0371⇤ �0.0482⇤
IT 0.0092⇤ 0.0541⇤ �0.0010⇤ 0.0346⇤ 0.0102 0.0196
BE �0.0121⇤ 0.0082 �0.0114⇤ 0.0042 �0.0007 0.0041⇤
DE �0.0089⇤ �0.0177⇤ �0.0043 �0.0048 �0.0047⇤ �0.0129
EE �0.0044⇤ �0.0026 0.0218⇤ 0.0475⇤ �0.0262⇤ �0.0501⇤
ES 0.0644⇤ 0.1010⇤ 0.0516⇤ 0.0691⇤ 0.0128 0.0318⇤
NO �0.0294⇤ 0.0155 �0.0485⇤ �0.0023 0.0191⇤ 0.0177
NL �0.0045⇤ 0.0035⇤ �0.0200⇤ 0.0029 0.0155⇤ 0.0006⇤
SK �0.0389⇤ �0.0764⇤ �0.0149⇤ �0.0502⇤ �0.0240 �0.0262
LU 0.0170⇤ 0.0311⇤ �0.0036⇤ 0.0123⇤ 0.0206⇤ 0.0188
FR �0.0022 0.0204 0.0226⇤ 0.0258 �0.0249⇤ �0.0054
AT 0.0039 0.0081 0.0042 0.0112 �0.0003 �0.0031
FI 0.0100 0.0099⇤ 0.0007 0.0165 0.0094 �0.0066⇤
CZ �0.0157⇤ �0.0493⇤ �0.0089⇤ �0.0245⇤ �0.0068⇤ �0.0248⇤
DK 0.0351⇤ 0.0249⇤ 0.0240⇤ 0.0235 0.0111⇤ 0.0014
SI �0.0012 0.0208⇤ 0.0020⇤ 0.0260 �0.0032 �0.0052
CY 0.0582⇤ 0.0695⇤ 0.0014 0.0072 0.0568⇤ 0.0624⇤
SE 0.0146⇤ 0.0098⇤ 0.0189 0.0239 �0.0043 �0.0141
IS �0.0071 0.0085 0.0049 0.0224 �0.0120 �0.0140

Note: Countries ranked in descending order according to LB 2006.

Statistically significant changes are denoted by ⇤

Table 2 reports the changes in LB and the AROPE rate between 2006 and 2016
and each of the sub-periods 2006–2011 and 2011–2016. For the period 2006–2016



Poland shows the largest and most significant reduction in LB and AROPE,
while the highest increases are found for Spain, Cyprus and Greece. In these
countries, the change in the extension and in the degree to which people are ‘left
behind’ in terms of multidimensional poverty goes in the same direction. For the
period 2006–2011 also Poland shows the greatest and most significant reduction
in LB and AROPE, while in 2011–2016 it is Latvia. The highest increases are
found for Spain and Ireland in 2006–2011 and Cyprus and Greece in 2011–2016.

Nonetheless, we can identify countries such as Portugal and Norway where
the extension of multidimensional poverty (AROPE) from 2006 to 2016 in-
creased, while the degree to which people are ‘left behind’ in multidimensional
poverty decreased. The case of Lithuania is more worrying in the period 2006–
2016. If we analyze only the AROPE rate, we conclude that there was a reduction
of 6 percentage points from 2006 to 2016, but this reduction did not lead to an
improvement for all, as the average level at which people were ‘left behind’ in-
creased. Slovakia in the period 2006–2011 and Finland in 2011–2016 are also in
the same situation as Lithuania for the whole period.

In this regard, if we had the same individuals in a panel for these 10 years,
we could also estimate if there is convergence in the individual LB within each
country, apart from the convergence in the average ‘left behind’ degree across
countries.

Fig. 1. Changes in LB and changes in AROPE (2006�2016) for countries in increasing
order according to LB for 2006

5 Robustness

Until now we have considered the union of fuzzy sets as the way to aggregate
information in a composite indicator, but as said in section 3.3 there are multiple
ways to formulate a composite indicator of multidimensional poverty with fuzzy
sets.



In this section we propose other alternatives of aggregation of the information
across dimensions, the intersection of fuzzy sets and combinations of the inter-
section and union criterion. Thus, we propose two alternative value judgements
and mixed positions in between.

Definition 10. Let h 2 {1...H} be dimensions, U the population set and ([0, 1],
,⌦,!, 0, 1) the residuate lattice. Let fh be the fuzzy set of dimension h from Def-
inition 5.

The mapping � : U ! [0, 1] is defined as follows:

�(i) = (
H\

h=1

fh)(i) =
H^

h=1

fh(i)

for all i 2 U .

Definition 11. Let h 2 {1...H} be dimensions, U the population set and ([0, 1],
,⌦,!, 0, 1) the residuate lattice. Consider � 2 [0, 1] and let ↵ and � be the fuzzy
sets of dimension h from Definitions 9 and 10. The mapping � : U ! [0, 1] is
defined as follows:

�(i) = �↵(i) + (1� �)�(i) = �

H_

h=1

fh(i) + (1� �)
H^

h=1

fh(i)

for all i 2 U .

We could consider that the intersection criterion allows for no compensation
between dimensions and captures the worst value achieved by an individual
whereas the union criterion does not allow for compensation but rather reflects
the best value achieved by the individual. It is possible to find many di↵erent
value judgements in between and in this section we check the robustness of the
ranking of countries considering a wide range of aggregation alternatives.

Figure 2 shows the values of LB by country in 2016 for di↵erent value judg-
ments. The judgments range from the worst value (� = 0) or intersection cri-
terion, to the best value (� = 1) or union criterion, and intermediate criteria,
which are a linear combination of the union and intersection criteria (0 < � < 1).
The countries do not show much re-ranking for intermediate values of �, with the
exceptions of Finland, Slovakia and Hungary, which change at most 5 positions.
Greece, Lithuania, Spain and Italy lead the ranking in this order, while Iceland
and the Czech Republic are among the countries the smallest values and the
former increases its gap from the rest of countries as more weight is given to the
maximum achievement. This means that if we evaluate according to the worst
dimension, Iceland does not di↵er much from the other countries. However, if we
evaluate based on the best dimension, the breach with other countries increases.

As expected, the ranking of countries changes depending on the aggregation
criterion used. Nonetheless, we can obtain robust conclusions for an intermediate
combination of criteria, which can be very informative for policy purposes.



Fig. 2. LB by country for 2016 under di↵erent aggregation methods

6 Conclusions

In this paper we used a fuzzy sets approach to measure the degree to which
an individual is ‘left behind’ in a specific dimension of poverty and propose
alternatives to determine the extent to which an individual is ‘left behind’ in a
multidimensional setting.

This is not the first paper to implement fuzzy sets for measuring multidimen-
sional poverty. However, its novelty lies in proving how fuzzy sets theory can be
useful to respond to the concern that progress should not leave anyone behind.
Our approach also complements and extends the information on the proportion
of individuals who are at the bottom part of the distribution, thus indicating
who has been ‘left behind’ and to what degree.

We illustrate our proposal using the AROPE framework on multidimensional
poverty. The empirical results highlight that, even though the ranking of coun-
tries considering the average ‘left behind’ level across European countries is in
line with that of the AROPE rate, our fuzzy measure provides richer informa-
tion. While AROPE informs about the extension of multidimensional poverty,
LB incorporates information on the depth of multidimensional poverty, allowing
us to evaluate the ‘leaving no one behind’ notion in terms of multidimensional
poverty. In this regard, some countries have a better (lower) AROPE rate rank-
ing than the LB and viceversa. Our results also reveal some signs of convergence
across European countries between 2006, 2011 and 2016 in the application of the
‘leaving no one behind’ principle, as countries with higher LB are those that have
reduced their value the most. Our analysis confirms the need to complement the
AROPE rate with a measure that reflects the depth of multidimensional poverty.
Our proposal may be an appropriate candidate given its correspondence with the
AROPE rate, the ease in interpreting the results and the abundant possibilities
it o↵ers for analysis.



The results of our analysis constitute a good starting point for certain socio-
economic policies in order to put into practice the ‘leaving no one behind’ ideal.
Obviously more research is needed, for instance, in terms of specific characteris-
tics of the population left behind in each country to properly implement e↵ective
policies.

Some caveats should be noted in our proposal. First, we focus on shortfalls
that can be small to achieve the objective (those better positioned than the ana-
lyzed individual) in each dimension. We could have considered another objective
(perhaps the median position or the 90th percentile), but it would have involved
the introduction of some value judgment with respect to the objective. Secondly,
in the empirical illustration we have taken the union criterion for the joint mea-
surement of dimensions. We then checked the robustness of the result under other
alternatives for aggregating the dimensions. The di↵erent aggregation methods
imply di↵erent value judgments or compensations among dimensions that must
be chosen by the social planner and could lead to di↵erent or robust conclusions,
with both results being very informative.

All in all, it is clear that, if we want to move towards the achievement of
the SDGs and shared prosperity among all, we need to identify those who are
left behind, quantify how much they are left behind and act accordingly. Our
proposal provides novel insights to progress towards this goal.

7 Appendix

Table A1. Number of observations by country and year

Country 2006 2011 2016
AT 4, 004 3, 889 3, 661
BE 4, 013 3, 788 3, 689
CY 2, 355 2, 280 2, 275
CZ 4, 624 4, 993 4, 421
DE 8, 585 8, 079 7, 147
DK 3, 934 3, 092 3, 487
EE 3, 740 3, 167 3, 625
EL 3, 148 3, 034 8, 924
ES 7, 443 7, 765 8, 260
FI 8, 190 6, 453 6, 951
FR 6, 766 7, 140 6, 776
HU 4, 564 7, 437 3, 898
IE 3, 354 2, 628 2, 951
IS 2, 222 2, 288 2, 000
IT 12, 267 10, 713 11, 272
LT 2, 915 2, 991 2, 607
LU 2, 879 3, 898 2, 698
LV 2, 445 3, 324 2, 786
NL 6, 661 7, 140 7, 794
NO 4, 486 3, 314 4, 788
PL 10, 193 8, 048 6, 834
PT 2, 423 2, 795 5, 677
SE 4, 912 4, 348 3, 509
SI 6, 756 6, 503 5, 643
SK 3, 313 3, 278 3, 144
UK 6, 131 4, 478 5, 308

132, 323 126, 863 130, 121
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