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Abstract

Linear hedonic regression is commonly utilised to estimate missing prices in
cases where there is product entry and exit, or product “churn”, but the linear
assumption of prices in product characteristics is dubious. Actual consumer
purchase patterns show that product characteristics are not perfectly sub-
stitutable so that the prediction capacity of linear models is challenged. I
consider alternative estimations of hedonic prices by introducing tree-based
machine learning models that are highly recommended for prediction accuracy.
Particular attention is paid to the micro-economic explanation of tree-based
models. A tree decision structure is compatible with consumer preferences
when product characteristics are complements. Model performance metrics
from (electronic-point-of-sale) scanner data confirm prediction accuracy gains
from the appropriate model selection that follows consumer behaviour founda-
tion. I find that random forests are the best fitted model with largest R̄2-type
measures among a series of models. Price indexes with random forests display
correct predictions that are robust in the single, double and full imputations.
The variable importance estimated for product characteristics is consistent
with the actual coefficients of hedonic functions in price simulation. It is ad-
visable that tree-based decision approaches, especially random forests, can be
effectively employed for unmatched products in hedonic imputation due to
their prediction accuracy and compatibility with consumer utility types.

Keywords: hedonic imputation; machine learning; price indexes; unmatched
products
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1 Introduction

The compilation of price indexes is an essential instrument for our understanding of

economy performance and will directly influence decision-making process of the gov-

ernment and industry organisations. For example, the calculation of consumer price

indexes helps to measure the cost of consumer goods and services, which serves as

an economic indicator for monetary policy and wage negotiations (Hill and Melser,

2008). The Reserve Bank conducts open-market operations to keep prices stable at

a reasonable level, depending on inflation or deflation reflected by consumer price

indexes. Employees seek wage escalations and employers determine wage adjust-

ments when consumer price indexes increase. Price indexes play a key role in guiding

government policies and labour market agreements. Common bilateral price indexes

used by statistical offices include Laspeyres indexes, Paasche indexes, Fisher indexes

and Törnqvist indexes. They capture the price movement of matched products, or

balanced data where all products repeat in successive periods.

However, the main challenge for applying these indexes, is that new and disap-

pearing products in a rapidly growing market result in unmatched items. Prices of

new products in the base period are unavailable, and so are prices of disappearing

products in the current period. To undertake unmatched products in practice, hedo-

nic imputation has been utilised to estimate missing prices. Hedonic imputation is

built upon on a hedonic model that assumes product prices to be decided by product

characteristics. The linear hedonic model aligns a product with a number of char-

acteristics and computes contributions of each characteristic to product prices. One

unit increase in product characteristics leads to a corresponding increase in hedonic

prices. Given specific product characteristics, missing prices of unmatched products

can be estimated with hedonic regression.

The objective of this paper is to consider alternative accurate estimations of hedonic
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prices by introducing machine learning algorithms. I examine the prediction perfor-

mance of linear regression models and tree-based machine learning approaches. Tree-

based machine learning approaches, especially random forests, are recommended due

to impressive prediction capacities in data analysis cases (Bajari et al., 2015). I use

simulated scanner data to test whether machine learning achieves accuracy gains

in price prediction. Price indexes are further computed with estimated prices for

model comparison between linear regression and machine learning. Simulated scan-

ner data are flexible in utility functions so that I can also inspect how prediction

performance metrics respond to consumer preference types. Linear hedonic regres-

sion claims linear preferences on product characteristics while tree-based machine

learning is compatible with Leontief preferences. A sensitivity analysis of model

performance is necessary when consumer preferences vary in a wide range.

One possible factor by which the performance of hedonic imputation can be limited

is heteroscedasticity. It has an adverse effect on linear regression. Estimators in

an unweighted hedonic model will be inefficient under the heteroscedastic condition

(Miller and Startz, 2019). A solution proposed by Diewert et al. (2009) is to use

expenditure shares as weights and then apply weighted least squares (WLS). Ex-

penditure shares interpret WLS regression from an economic perspective, but it can

be argued whether expenditure shares are exactly actual weights within the context

of WLS. Constant variance can be transformed from non-constant variance only if

the unweighted model is divided by actual weights. Once expenditure shares are not

actual WLS weights, the prediction of missing prices can be technically challenged.

Apart from heteroscedasticity, a more critical issue of hedonic imputation is the se-

lection of function forms. Hedonic linear regression assumes that product prices are

linear in product characteristics. Product characteristics are perfectly substitutable

in the linear form. But consumers may find it hard to substitute one characteristic

with another characteristic freely when making real purchases. The linear form may
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not represent preferences on product characteristics. It reduces the prediction accu-

racy of price imputation by assuming a linear relationship when the true function

form is non-linear. Although linear hedonic regression can provide causal explana-

tions of product characteristics, prediction accuracy takes priority over coefficient

estimates for the purpose of price imputation.

A comparison between linear regression models and tree-based machine learning

models is made in this paper to test the capability of estimating missing prices in

unbalanced data sets where products enter or exit a market over periods. Linear

models include ordinary least squares, feasible generalised least squares with value

share weights or exponential weights, while tree-based models include regression

trees, bagging trees and random forests. Random forests prove to be the best fit-

ted model in in-sample and out-of-sample tests, with R̄2-type measures close to

1. Price indexes constructed by estimated prices also validate the prediction of ran-

dom forests, indicating 60% correct values in the single, double and full imputations.

In addition to price imputation, random forests provide variable importance that is

analogous to coefficient estimates of linear models in terms of variable contributions.

Variable importance quantifies the impact of independent variables on dependent

variables. It helps to demystify the “black box” argument of many machine learning

models.

An economic perspective is proposed to explain the remarkable prediction perfor-

mance of tree-based machine learning compared with linear models. Linear models

stand out when adopted to assess causal effects, but they are not recommended for

price imputation. The linear set-up does not capture the relationship between prod-

uct prices and product characteristics. In many cases, product characteristics, for

example flavour and size, cannot be interchangeably treated. The consumer utility

is incompatible with linear models that assume free substitutability among product

characteristics. As opposed to linear models, tree-base machine learning matches
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the consumer behaviour foundation. To clarify this mechanism, the elasticity of sub-

stitution is allowed to vary so that simulations can cover prices in a range of utility

types. For Leontief sub-utility where product characteristics are complements, tree-

based models are suitable because the change of prices in a tree structure is jointly

decided by a number of characteristics. Since prices will not necessarily increase

or decrease due to a single characteristic, tree-based models follow the property of

a Leontief function. For linear sub-utility where product characteristics are substi-

tutes, linear models are generally better because the sub-utility is linear in product

characteristics. Interestingly, random forests still have a remarkable fitting ability

in the linear sub-utility. This algorithm uses random samples and variables that

reconstitute the tree structure, so its prediction performance is stable regardless of

substitutability between product characteristics.

This paper is a novel study to combine microeconomic explanations with tree-based

machine learning models, including regression trees, bagging trees and random

forests, to estimate prices on scanner data. Machine learning is widely adopted

in predictive modelling cases, while its implementation in economics is still at an

early stage. Concerns are expressed about the paucity of economic interpretations

in machine learning. This paper explores the prediction mechanism of tree-based

machine learning models, and explains why a tree structure is suitable for consumer

preferences. Tree-based models are not only useful in predictive analytics, but also

consistent with the microeconomic foundation of consumer behaviour. Using ma-

chine learning algorithms to predict missing prices for unbalanced products extends

hedonic imputation options. These results are validated by real scanner data in the

robustness check.

The remaining part of this paper is organised as follows. Section 2 lists available

hedonic price approaches including linear hedonic regression and tree-based ma-

chine learning. Section 3 provides the generating process of scanner data based on
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consumer preferences. Section 4 presents the results by focusing on model selection

criteria, in-sample and out-of-sample predictions, price indexes, variable importance

and elasticity of substitution. Section 5 validates the results by applying models to

scanner data from the real dataset. The final section concludes.

2 Price imputation approaches

2.1 Linear hedonic regression

Hedonic imputation is based on a hedonic model that relates prices to time effects

and characteristics of certain commodities. Diewert (2003) worked on the originally

sophisticated hedonic framework by Rosen (1974) and revised it in a more simplified

way. I build upon the hedonic model modified by Diewert (2003) where a consumer

theory approach confirms the economic interpretation of hedonic pricing. Suppose

the consumer’s utility of a hedonic product that has a vector of characteristics

z = (z1, . . . , zJ) can be presented by f(z). The utility f(z) is defined as a separable

sub-utility function. If a consumer acquires N units of these hedonic products, the

total utility can be modelled equivalently as f(Nz). With the separable sub-utility

function Z = f(z) and an aggregate price ρt for one unit of Z, the hedonic aggregate

price of product i in period t can be expressed as:

pit = ρtf(zit) (1)

The relationship between hedonic prices and the consumer utility is clear in this

hedonic equation. For each unit of utility obtained from a hedonic product that has

characteristics z, a consumer needs to pay an aggregate price ρt. It separates the

quality adjustment from the price change.
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For hedonic regression, the separable sub-utility function is commonly assumed as a

linear form. Available linear forms include log-log, semi-log and linear equations. To

ensure that hedonic prices are always positive, the semi-log form of utility functions

is preferred:

ln f(zit) = α +
∑
j

βjzijt (2)

The semi-log form generates an unweighted time dummy hedonic regression model

that is frequently employed in the literature (see for example de Haan (2010)):

ln pit = α + δDt +
∑
j

βjzijt + εit (3)

In the right hand of the hedonic regression model, ln ρt is replaced by δDt, and εit

is added. Dt refers to a time dummy variable and εit denotes an error term. α, β

and δ are coefficients to be estimated.

An issue that needs to be addressed in the unweighted time dummy hedonic re-

gression is heteroscedasticity, that is, the changing variance of error terms. Diewert

et al. (2009) proposed a solution by using expenditure shares:

sit =
pitqit∑
k pktqkt

(4)

p is the product price and q is the product quantity. Multiplying the unweighted

hedonic model with the square root of expenditure shares leads to a weighted time

dummy hedonic model:

s
1
2
it ln pit = s

1
2
itα + s

1
2
itδD

t + s
1
2
it

∑
j

βnzijt + uit (5)

Thus the newly constructed error term uit is equal to s
1
2
itεit. For the case of het-

eroscedasticity where V ar(εit) = σ2
uhit, the assumption of constant variance σ2

u for

the error term uit can be satisfied if the expenditure share sit is exactly the actual
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weight 1/hit within the context of WLS regression. Using expenditure shares as

weights is favoured in hedonic regression for its economic explanation. Expenditure

shares are monetary proportions of total purchases and they are literally close to

the concept of weights. The limitation of expenditure share weighted regression,

however, is that the expenditure share sit is not necessarily the actual weight 1/hit

in WLS. This can reduce the prediction capacity when the regression is conducted

for hedonic imputation.

If the economic explanation of weights is discarded, an optional approach can be

considered for variance estimation. Assuming the conditional function hit to be

exponential, the conditional variance function can be estimated as what Wooldridge

(2015) proposed:

ln ε̂2it = θ + λDt +
∑
j

γjzijt + vit (6)

The predicted value ̂ln ε̂2it is then converted as the weight 1/ ̂̂ε2it. The weights based

on regression may be closer to actual weights than expenditure shares. But we need

to be cautious that the WLS method does not aim at prediction enhancement. Even

if we obtain actual weights in WLS and figure out unbiased estimators, accuracy

gains of price prediction can still be limited.

2.2 Machine learning algorithms

Although linear hedonic regression can provide causal explanations of coefficients,

the linear model is not the best option for hedonic price imputation. First, the

fitting capacity of linear models is not stable in different scenarios. Linear models

are suitable for consumer behaviour when the separable sub-utility function is lin-

ear, but they are not fitting non-linear hedonic prices. The prediction accuracy will

decrease dramatically if the separable sub-utility function turns to be non-linear.

Second, the linear assumption is not fully compatible with consumer preferences on
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product characteristics. The linear form of separable utility indicates that product

characteristics are perfectly substitutable. It means that consumers will be at the

same utility level if one product characteristic decreases and another product char-

acteristic increases correspondingly. But in practice, product characteristics have

their respective importance. Consumers may find it hard to substitute one charac-

teristic with another characteristic freely. Third, linear models are not designed for

price prediction. Linear regression features estimated coefficients that indicate the

response of dependent variables to independent variables. Unbiased and consistent

coefficients do not guarantee an excellent model prediction ability.

Compared with linear regression models, machine learning begins to attract eco-

nomic researchers due to its striking prediction ability. Machine learning involves a

great number of algorithms that can be categorised as supervised learning and un-

supervised learning. Supervised learning applies to problems with output labels like

classification and regression, while unsupervised learning applies to problems with-

out output labels like clustering and dimensionality reduction. Bajari et al. (2015)

evaluated traditional econometric models and machine learning algorithms for de-

mand estimation, and found noticeable lower prediction errors of machine learning

methods. Considering the importance of prediction in hedonic imputation cases, it

is sensible to introduce machine learning to price estimation.

Random forests are highlighted in this paper for hedonic imputation. As one of

the machine learning methods, random forests have demonstrated an outstanding

prediction ability in model comparison organised by Bajari et al. (2015). Apart

from prediction accuracy, random forests are preferred due to the tree structure

implied by this algorithm. The tree structure is formed when the data set splits into

two parts repeatedly at each node. A series of branches is produced according to

these nodes and they jointly decide prediction values at terminating nodes. With

the tree structure, prediction values will not be easily changed with the increase
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or decrease in a single independent variable. This structure is compatible with

the Leontief separable sub-utility where utility remains unchanged unless multiple

product characteristics change together. Therefore, tree-based algorithms are more

appropriate for hedonic prices than linear models when product characteristics are

not substitutes. In addition to random forests, I include regression trees and bagging

trees for methodology clarification. Random forests are based on the method of

bagging trees, and bagging trees are derived from regression trees.

To obtain the economic explainability of machine learning, I only include these tree-

based models that can be potentially related with consumer preferences and utility

functions. The complete machine learning framework, however, is more than what

this paper has covered. A key component of the mechanism that enables machines

to learn from data is an iterative training process. By evaluating the learning cost

(the cost function or the loss function), machines are taught by the data to find

appropriate parameters of the model so that the cost can be reduced in a desired

direction. For example, neural networks, an algorithm designed to simulate how the

human brain works, use backpropagation and gradient descent to find best weights

and biases of the model. An initial attempt to fit the data produces the learning cost

in neural networks. Then the algorithm evaluates the learning cost and updates the

weights and biases, expecting a lower learning cost. This training process repeats

until a satisfactory cost is produced. Considering the model interpretation, I choose

not to include such training process and only focus on tree-based algorithms. But

the iterative training process really reveals why machines can learn, and it may

be adopted for future research if I seek to explain the learning capacity of these

tree-based models.
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2.2.1 Regression trees

Regression trees are a type of CART (classification and regression trees) algorithms.

Breiman et al. (1984) initiated early attempts on CART that can be categorised

as classification trees for discrete responses and regression trees for continuous re-

sponses. The tree structure facilitates a non-linear prediction model for hedonic

prices. A more general form of hedonic regression can be expressed as:

ln pit = g(Dt, zit) + εit (7)

The unweighted time dummy hedonic regression adopts a linear form of g(Dt, zit) by

assuming a linear separable sub-utility f(z) on product characteristics. Regression

trees discard the linear assumption and estimate hedonic prices in a non-parametric

way. For the convenience of illustration, I use a general notation where ln pit is

denoted by yi and g(Dt, zit) is denotes by g(xi):

yi = g(xi) + εi (8)

x is the vector of independent variables (x1, . . . , xK). The objective of regression

trees is to split observations into distinct and non-overlapping regions {R1, . . . , RM}

such that least squares are satisfied within any region Rm. It is easy to see that the

average value ȳRm within region Rm solves the function estimation:

ȳRm = arg min
ĝ(xi)

∑
yi∈Rm

(yi − ĝ(xi))
2 (9)

The key step is to figure out the set of regions that minimises the sum of squared

errors:

{R∗1, . . . , R∗M} = arg min
{R1,...,RM}

∑
Rm

∑
yi∈Rm

(yi − ȳRm)2 (10)
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Ideally, I can enumerate all possible combinations of regions to decide the optimal

set of regions, but it is computationally infeasible for a large number of observations.

For example, to split 3000 observations into 10 regions, the enumeration approach

forces me to examine C(3000, 10) ≈ 1.6 × 1028 possibilities to find the optimal set

of regions. Large data sets even require a huge amount of computational resource.

To reduce excessive possibilities, regression trees utilise recursive binary splitting

when growing the tree structure. For the independent variable xk in (x1, . . . , xK),

regression trees choose a partition point ψk to split yi into two parts: the left part

ΨL = {yi | xik < ψk} and the right part ΨR = {yi | xik ≥ ψk}. The objective of

setting ψk is to minimise weighted mean squared errors (MSE) while least squares

are satisfied in each part:

MSE∗(xk) = min
ψk

(∑
yi∈ΨL

PL
1

NL

(yi − ŷΨL)2 +
∑
yi∈ΨR

PR
1

NR

(yi − ŷΨR)2

)
(11)

Regression trees use the mean value of yi in each part as the estimation, that is,

ŷΨL = ȳΨL and ŷΨR = ȳΨR . PL is the proportion of observations that are split into

the left part by ψk, NL is the number of observations in the left part, and ŷΨL is the

function estimation of yi in the left part. PR, NR and ŷΨR also refer to these figures

but in the right part. At the root node (the first level of partition), the computation

of optimal weighted MSE loops for each independent variable. The best partition is

determined by selecting the independent variable and the partition point that result

in the least optimal weighted MSE. Then the partition repeats at internal nodes or

split nodes (subsequent levels) until some terminating rule applies. A set of regions

can be efficiently confirmed for regression trees. Note that efficiency is at the cost

of accuracy. Recursive binary splitting is a greedy algorithm that carries out the

optimal split at each single node. It neglects a better split that may appear when

examining a few nodes ahead.
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2.2.2 Bagging trees

To improve prediction accuracy, Breiman (1996) developed a bagging procedure,

namely an acronym of bootstrap aggregating. Rather than obtaining a single value

for each prediction, the bagging procedure takes an average value (or majority vot-

ing in classification issues) of predictions on multiple bootstrapped samples when

these samples are drawn from original observations with replacement. Consider the

original data set Ω = {(yi,xi) | i = 1, . . . , N} with N observations. The bagging

procedure repeats drawing N random observations with replacement for B times to

construct bootstrapped samples Ωb, b = 1, . . . , B. A number less than N for boot-

strapped samples is also reasonable depending on computational efficiency. Each

bootstrapped sample produces a trained model. Given input values, these trained

models generate output values for prediction. The average value of predictions that

are obtained from these trained models is the bagging prediction.

When the bagging procedure applies to regression trees, bagging trees are formed

with regression trees growing on bootstrapped samples. The average value of pre-

dictions from regression trees is used as the prediction of bagging trees:

Ĝ(xi) =
1

B

∑
b

ĝb(xi) (12)

Ĝ(xi) is the bagging prediction, and ĝb(xi) is the prediction on the b-th regression

tree. Averagely speaking, the bagging prediction performs better than one single

prediction that composes the bagging prediction. Given fixed input values, the

squared error of bagging prediction is (yi − Ĝ(xi))
2 and the squared error of one

regression tree prediction is (yi− ĝb(xi))
2. Note that the average of squares is larger

13



than or equal to the square of an average:

∑
b

ĝ2
b =

∑
b

(
(ĝb − Ĝ)2 + 2Ĝ(ĝb − Ĝ) + Ĝ2

)
=
∑
b

(ĝb − Ĝ)2 + 2Ĝ(
∑
b

ĝb −BĜ) +BĜ2

≥ BĜ2

(13)

Then it can be demonstrated that the squared error of prediction averaged over all

regression trees is larger than or equal to the squared error of bagging prediction:

1

B

∑
b

(yi − ĝb(xi))
2 = y2

i − 2yi
1

B

∑
b

ĝb(xi) +
1

B

∑
b

ĝ2
b (xi)

≥ (yi − Ĝ(xi))
2

(14)

For each point estimation on (yi,xi), the inequality indicates that bagging prediction

is averagely better than a single prediction. If both sizes of the inequality are

integrated over the data set Ω, the statement that bagging trees averagely outweigh

a single regression tree will still hold true.

The benefits of bagging are more than reducing prediction errors. Since bootstrap-

ping is a technique of random sampling with replacement, some observations may

not be selected when one bootstrapped sample is produced. These observations are

called out-of-bag (OOB) data because they are not situated in the bootstrapped

bag. Models trained over bootstrapped samples can be tested on OOB data so that

additional cross validation is not necessary in bagging trees. Besides model testing,

it is convenient to use OOB data to measure variable importance. Variable impor-

tance helps to enhance the explainability of bagging trees. As a data-driven model,

machine learning is often challenged because it is not fully explainable. Variable

importance provides relative impacts of independent variables on the dependent

variable, which specifies how independent variables relatively contribute to the pre-
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diction on the dependent variable.

2.2.3 Random forests

Although the bagging procedure tends to reduce prediction errors, it is primar-

ily effective only when predictions are independent between bootstrapped samples.

Accuracy gains of bagging trees will not be noticeable if predictions of trees are

correlated with each other. To reduce the correlation of trees, Ho (1995) proposed

a stochastic model where subspaces are selected over the whole feature space. The

term “feature” in machine learning is analogous to the term “independent variable”

in econometrics. A random subset of independent variables is selected for growing

each tree. Since each tree grows on a different set of independent variables, the cor-

relation of predictions can be reduced. This is the initial version of random forests.

Breiman (2001) extended this algorithm by allowing for random selection of inde-

pendent variables at each node, which further decouples these trees. The general

procedure of random forests is equivalent to bagging trees according to Breiman

(2001), except that independent variables are randomly sampled at each node. For

a bootstrapped sample Ωb in bagging trees, the feature space X is the set of all

variables, that is, X = {x1, . . . , xK}. While for a bootstrapped sample in random

forests, a subspace Xs ⊆ X at each node is employed with independent variables

randomly selected. The bagging procedure is once again conducted but with the

subspace Xs. The random forest prediction is generated by taking an average value

over predictions of trees. Both observations and variables are randomly sampled in

random forests.

I have demonstrated that the bagging prediction is averagely better than a single

tree prediction. At each point estimation, the bagging prediction provides a lower

squared error than squared errors averaged over all trees. I can then integrate

squared errors over all data points to see how tree correlation affects prediction
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accuracy. The sum of squared errors of bagging trees is expressed as:

∑
i

(yi − Ĝ(xi))
2 =

∑
i

(
yi −

1

B

∑
b

ĝb(xi)

)(
yi −

1

B

∑
d

ĝd(xi)

)
=

1

B2

∑
i

∑
b

∑
d

(yi − ĝb(xi)) (yi − ĝd(xi))

(15)

Ĝ(xi) is the bagging prediction, ĝb(xi) is the prediction on the b-th regression tree,

and ĝd(xi) is the prediction on the d-th regression tree. ĝb(xi) and ĝd(xi) are

rotationally symmetric. The difference of b and d is used to show that these pre-

dictions of regression trees are summed in different orders. Recall ĝb(xi) is the

average value of yi within a partition region. Therefore, (yi − ĝb(xi)) (yi − ĝd(xi))

is a covariance-type term. The covariance-type term can be related to a sample

correlation coefficient:

ρbd =

∑
i (yi − ĝb(xi)) (yi − ĝd(xi))√∑

i(yi − ĝb(xi))2
√∑

i(yi − ĝd(xi))2
(16)

The coefficient ρbd captures the correlation between ĝb(xi) and ĝd(xi). Based on

ρbd, a weighted correlation coefficient ρ̄ is defined as:

ρ̄ =

∑
b

∑
d ρbd

√∑
i(yi − ĝb(xi))2

√∑
i(yi − ĝd(xi))2

(
∑

b

√∑
i(yi − ĝb(xi))2)2

(17)

Using the weighted correlation coefficient, the sum of squared errors of bagging trees

can be written as:

∑
i

(yi − Ĝ(xi))
2 = ρ̄

1

B2

∑
b

√∑
i

(yi − ĝb(xi))2

2

= ρ̄

 1

B

∑
b

√∑
i

(yi − ĝb(xi))2

2

≤ ρ̄
1

B

∑
b

∑
i

(yi − ĝb(xi))
2

(18)
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The inequality is produced because the square of an average is no greater than the

average of squares (see the proof in bagging trees). It can be seen from the inequality

that the sum of squared errors of bagging prediction is lower than or equal to ρ̄

times the sum of squared errors averaged over all trees. This is the reason why

random forests take random selection on variables. In a standard regression tree, a

few variables may always be chosen at every node even though their corresponding

mean squared errors are only slightly lower. These variables dominate the recursive

binary splitting when a tree grows. Random forests allow independent variables to

be randomly sampled so that every variable can be possibly selected. This ensures

the variety of trees and reduces their correlation. With the correlation of predictions

on trees dropping down, the prediction bias is diminished in random forests.

3 Scanner data simulation

The data set adopted to compare prediction performance in this paper is constructed

by Monte Carlo simulation to approximate real scanner data. Scanner data include

historical information on prices, quantities and characteristics of commodities that

can be obtained by scanning corresponding bar codes. These bar codes specify

various product items. I simulate 1000 different products in the scanner data set

and they are labelled with Universal Product Codes (UPC). These fictional products

are assumed to appear in consecutive 52 weeks, that is, a one-year period without

seasonal adjustment. 70% of the complete observations are randomly selected as

training data and the remaining 30% observations are selected as testing data. I run

different models on training data and measure the performance of price prediction

on testing data.

The most distinctive feature that makes scanner data different from online web-

scraping data, is the quantity information. Raw scanner data in databases like
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Dominick’s should include two quantity-related variables: the number of items sold

and the number of items in a bundle. Dividing the number of items sold by the

number of items in a bundle generates the number of bundles sold, which is the

product quantity q in this paper. To set a solid microeconomic foundation for data

simulation, I follow the construction of artificial data from Diewert and Fox (2017)

where a constant elasticity of substitution (CES) function underlies preferences of

consumers. Consider the utility function with constant elasticity of substitution:

U =

(∑
i

a
1
σ
i q

σ−1
σ

i

) σ
σ−1

(19)

where qi is the product quantity, ai is a series of positive parameters amounting

to 1, and σ is the elasticity of substitution. The property of CES utility function

depends on the value of σ. When σ approaches 0, it turns to be a Leontief utility

function that indicates perfect complements among products. When σ approaches

infinity, it turns to be a linear utility function that indicates perfect substitutes

among products. I choose σ = 1 for scanner data simulation so that the utility

function approaches a Cobb-Douglas form that is an intermediate state regarding

product substitution (technically σ = 1.0001 for programming convenience). Given

the price pi on item i, it can be demonstrated that the corresponding expenditure

share is:

si =
aip

1−σ
i∑

i aip
1−σ
i

(20)

I assume that the expenditure e follows a uniform distribution in the range of [0, 1]

during different periods. Product quantities can be computed straightforwardly:

qi =
esi
pi

(21)

This process repeats for 52 weeks and the issue of product quantity in simulated

scanner data is resolved based on the CES utility function.
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A common assumption of hedonic imputation is that the separable sub-utility func-

tion f(z) adopts a semi-log form. The ln f(z) is formed by aggregating linear terms

of product characteristics. This is a strong assumption because characteristics may

not be substitutes. For example, the volume of soft drinks cannot easily replace the

flavour of them. Consumer may not choose to lose their favourite flavours by receiv-

ing a larger size of drinks. To be consistent with the product quantity generating

process, the separable sub-utility function in this paper is assumed to follow a CES

function form rather than a linear function:

ln f(z) =

(∑
j

β
1
σ
j z

σ−1
σ

j

) σ
σ−1

(22)

When σ is large enough, it approaches the semi-log form that is frequently used

by traditional hedonic imputation. I allow σ to vary around 1 so that the model

performance can be compared in various elasticity scenarios. All product character-

istics follow a uniform distribution on [0, 1]. The time effect δ is 0 in the first week

and follows a normal distribution in other periods. Heteroscedasticity is included by

conditioning the error term on an exponential function. Specifically, product prices

are constructed in the following way:

ln pit = α +
∑
k

δkDk +

(∑
j

β
1
σ
j z

σ−1
σ

ijt

) σ
σ−1

+ εit (23)

δk ∼ N (0, σ2
δ ) (24)

zijt ∼ U(0, 1) (25)

εit ∼ N (0, σ2
ε ) (26)

σ2
ε = h(δ, zit)σ

2
u (27)

h(δ, zit) = exp(α +
∑
k

δkDk +
∑
j

βjzijt) (28)
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α refers to the constant term. δk denotes the time effect and Dk denotes the time

dummy for k = 2, . . . , 52. βj is the coefficient of product characteristics and I set

up β1 = 0.4, β2 = 0.3, β3 = β4 = β5 = 0.1 for five product characteristics. The

variance of error terms is based on a common variance σ2
u and a function h(δ, zit)

conditioning on time effects and product characteristics. I choose an exponential

form of h(δ, zit) to create severe heteroscedasticity. Table 1 lists parameters adopted

for the simulation of product prices.

The summary statistics of simulated scanner data and assisting variables are pre-

sented in Table 2. The variable p refers to the retail price of a bundle of commodities

and the variable q indicates the number of bundles sold. Note that the variable q is

multiplied by 1000 for the purpose of being displayed clearly in the table. All prod-

uct characteristics employed in the simulation are numerical variables, including z1,

z2, z3, z4 and z5. The variable ε is sampled from a normal distribution with differ-

ent variances so that heteroscedasticity is simulated. Other variables such as the

coefficient a in the CES utility, the expenditure share s and the total expenditure e

in each period assist to compute product quantities. With these assisting variables,

a microeconomic foundation is provided for scanner data simulation.
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Table 1: Parameters for hedonic price simulation

Parameters Definitions Values
α Constant term 1
β1 Coefficient of product characteristic 1 0.4
β2 Coefficient of product characteristic 2 0.3
β3 Coefficient of product characteristic 3 0.1
β4 Coefficient of product characteristic 4 0.1
β5 Coefficient of product characteristic 5 0.1
σ Elasticity of substitution 1.0001
σ2
δ Variance of time effects 0.2
σ2
u Common variance of error terms 0.01

Note: σ is 1.0001 rather than 1 for programming convenience. Fol-
lowing the literature about the CES utility function, I use σ to
denote elasticity of substitution and it should be distinguished with
the standard deviations σδ and σu.

Table 2: Summary statistics of scanner data

Definitions Mean St. Dev. Min Max
Product features
p Retail prices 19.492 15.825 1.932 185.016
1000q Number of bundles 0.050 0.061 0.000 0.616
z1 Characteristic 1 0.499 0.289 0.000 1.000
z2 Characteristic 2 0.501 0.288 0.000 1.000
z3 Characteristic 3 0.502 0.288 0.000 1.000
z4 Characteristic 4 0.501 0.287 0.000 1.000
z5 Characteristic 5 0.501 0.290 0.000 1.000

Assisting set-up
ε Error terms 0.000 0.046 −0.266 0.266
a Utility coefficients 0.001 0.001 0.000 0.002
s Expenditure shares 0.001 0.001 0.000 0.002
e Expenditures 0.590 0.286 0.009 0.996

Note: Zero values are caused by rounding numbers to 3 decimal places for display
while original values are not necessarily zero. I multiply the number of product bun-
dles by 1000 for the purpose of displaying it in detail. Heteroscedasticity is considered
for error terms. Coefficients in the CES utility function, expenditures shares and ex-
penditures are used to generate product quantities. The full data set includes 52,000
observations.

After applying these rules for 52 weeks and 1000 products, the data set has been
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scaled to include 52,000 observations. They are randomly divided into the training

data set and the testing data set with a common ratio of 70% versus 30%. The

training set is adopted to generate estimation models. These models are evaluated

in the testing data set by measuring the performance of predicting hedonic prices.

I draw on a series of information criteria so that the model performance can be

evaluated from a variety of perspectives. The testing data set is also used as a

benchmark when prices indexes are constructed. Prices in the testing data are

treated as actual prices to replace predicted prices in single, double and full hedonic

imputations. Price indexes are compared to determine which method has resulted

in the measurement of price change closest to the testing data.

4 Model performance

4.1 Model selection criteria

Researchers use R squared (R2) and adjusted R squared (R̄2) to evaluate the per-

formance of estimation methods and determine the best fitted model. R2 measures

the fraction of variance explained in terms of the total variance, while additional

variables in the model will spuriously increase R2 even though the prediction per-

formance is not really improved. R̄2 avoids this misleading information by posing

penalty to the number of variables and so it serves as a more accurate indicator.

Apart from being used as an indicator to identify which model outweighs, R̄2 is

selected for characterising the quality of the model fit, that is, how R̄2 of a certain

model is close to 1.

Due to the benefits of R̄2 on model comparison and model fit quality, Fox (2000)

facilitated the transformation of some information criteria into the same pattern as
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R̄2. The construction of R̄2-type expressions starts with the basic element R2:

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳi)2

(29)

where yi denotes the observed value, ŷi refers to the fitted value produced by model

estimations, and ȳi indicates the mean value of observed data. Drawing on R2,

Table 3 summarises options of available information criteria that convey the same

dimension of information as R̄2. In Table 3, N denotes the number of observations,

and J indicates the number of independent variables. Model selection criteria of

AIC (Akaike’s information criterion), SC (Schwartz’s criterion, or Bayesian infor-

mation criterion), and HQ (Hannan and Quinn criterion) include a penalised log

likelihood form that is related to the sum of squared errors. The sum of squared

errors bridges to the construction of R̄2. Fox (2000) defined corresponding R̄2-type

expressions for AIC, SC and HQ by extracting a special item that consists of the

sum of squared errors and a penalty coefficient, dividing it by the sum of squared

total, and subtracting it from 1. Other model selection criteria such as Jp, Sp and

GCV (generalised cross validation criterion) are directly enclosed with the sum of

squared errors, making the transformation even straightforward. By utilising these

modified information criteria, I can compare the performance of models as well as

the quality of the model fit for the aforementioned OLS, FGLS and machine learning

specifications.
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Table 3: Information criteria and related R̄2-type expressions

Expressions References

R̄2 = 1− (N/(N − J))(1−R2) Theil (1961)
R̄2(AIC) = 1− (exp(2J/N))(1−R2) Akaike (1973)
R̄2(SC) = 1−N (J/N)(1−R2) Schwarz et al. (1978)
R̄2(HQ) = 1− (lnN)(2J/N)(1−R2) Hannan and Quinn (1979)
R̄2(Jp) = 1− ((N + J)/(N − J))(1−R2) Amemiya (1980)
R̄2(Sp) = 1− (N2/((N − J)(N − J − 1)))(1−R2) Hocking (1976)
R̄2(GCV ) = 1− (1− J/N)−2(1−R2) Craven and Wahba (1979)

Note: AIC (Akaike’s information criterion), SC (Schwartz’s criterion, or Bayesian infor-
mation criterion) and HQ (Hannan and Quinn criterion) feature a penalised log likelihood
form. Jp, Sp and GCV (generalised cross validation criterion) feature the sum of squared
errors. These criteria are transformed into R̄2-type expressions according to Fox (2000).

These R̄2-type expressions should be computed with caution when FGLS methods

are considered. Willett and Singer (1988) clarified the use of R2 in the weighted

least squares. Variables combined with weights in WLS are called transformed

variables. The output of R2 provided by statistical computing packages is based on

these transformed variables. Denote y∗ as the transformed variable w
1
2y, and the R

squared of WLS is computed by:

R2
WLS = 1−

∑
i(y
∗
i − ŷ∗i )2∑

i(y
∗
i − ȳ∗i )2

(30)

Since WLS minimises the sum of squared errors for the transformed variable, R2
WLS

will frequently become larger than R2 given an appropriate weighting structure.

This may lead to the interpretation that WLS regression has better performance

in prediction, though it is not necessarily the truth. When R2
WLS is significantly

larger than R2, estimated coefficients in OLS and WLS may be almost the same,

leading to similar fitted values between OLS and WLS. Using R2
WLS will mislead the

performance comparison for these models. Additionally, R2 needs to be computed

manually in the FGLS regression rather than taking R2
WLS reported by the statistical

software because our focus is on the original variable, not the transformed variable.
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The process of determining model performance is running models on the training

data set prior to price prediction on the testing data. The transformed variable w
1
2y

cannot be predicted with the testing data set since the information of weights is

unknown.

4.2 In-sample and out-of-sample prediction

I firstly conduct models in the training data set so that the in-sample estima-

tion of prices can be carried out. These models are OLS, FGLS with value share

weights from Equation 4 (FGLS1), FGLS with exponential weights from Equation 6

(FGLS2), regression trees, bagging trees and random forests. Figure 1 provides the

comparison between observed prices and fitted prices (both in logarithmic forms) for

them. Predicted prices by OLS tend to be higher than observed prices, indicating

an over-estimating bias. Recall that in the scanner data simulation, a Cobb-Douglas

function of product characteristics is included to construct product prices. But the

OLS model estimates prices by assuming a linear form of product characteristics.

This results in a systematic prediction bias, which is an upward bias in this case. The

FGLS models are also built on linear regression so that they share the same upward

bias as OLS. Compared with OLS, FGLS methods generate different estimated coef-

ficients by introducing a weighting function. FGLS1 denotes weighted least squares

using value shares as weights while FGLS2 denotes weighted least squares using an

natural exponential weighting function. However, plots of observed prices and pre-

dicted prices for FGLS1 and FGLS2 are fairly close to that of OLS, showing limited

prediction accuracy gains. Note the weighting function in FGLS2 exactly follows the

heteroscedasticity pattern in scanner data simulation. It can be found that solving

the heteroscedasticity problem does not remarkably enhance the prediction ability

when comparing Figures 1a and 1c.
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To explore models that exclude the linear assumption, the prediction results of

machine learning models are plotted. Regression trees produce a set of discrete

predicted prices in Figure 1d. This special prediction type is due to the tree-based

algorithm that develops into terminating nodes (see Figure 2). A limited number

of predicted values are generated and the prediction performance of regression trees

is unsatisfactory. Bagging trees undertake this issue by taking an average value of

all trees and allowing predicted values to be between discrete levels. The transition

from Figure 1d to Figure 1e implies the bootstrapping and averaging process in

bagging trees. Random forests move into even higher flexibility since variable selec-

tion is randomly decided. This relaxes the restriction that predicted values must be

between multiple levels. Prediction performance is greatly improved and predicted

prices by random forests are almost equal to observed prices in Figure 1f.

(a) OLS (b) FGLS1 (c) FGLS2

(d) Regression trees (e) Bagging trees (f) Random forests

Figure 1: In-sample observed prices and predicted prices

A closer inspection of R2 and R̄2 reveals that the random forest model captures the
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Figure 2: Nodes and branches in regression trees

most variability (0.99) of product prices around the average value. Linear models

present a relatively weak performance. OLS, FGLS with value shares and FGLS with

the natural exponential function have similar R2 and R̄2 at approximately 0.87.

However, tree-based models like regression trees and bagging trees do not match

random forests in price prediction. Only 0.7 variability is obtained by regression

trees and 0.74 variability is obtained by bagging trees. In addition to R2 and R̄2,

other alternative information criteria have been adopted to quantify how estimated

prices fit actual prices. It can be seen from various R̄2-type expressions in Table

4 that random forests once again extract the most detailed information from the

training data set. The performance metrics of OLS and FGLS methods are less

impressive than those of random forests, but outweigh the results of regression trees

and bagging trees. From the perspective of the strictest criterion SC, random forests

score 0.99 for R̄2(SC), demonstrating a high quality of the model fit capacity. What

stands out in the last three rows is that R̄2(Jp), R̄2(Sp) and R̄2(GV C) share the

same values, which is due to the rounding of numbers to four decimal places.

In-sample prediction results are not strongly convincing to determine model perfor-
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Table 4: In-sample prediction performance in R2 types

OLS FGLS Machine learning
Value
shares

Exponents Regression
trees

Bagging
trees

Random
forests

(1) (2) (3) (4) (5) (6)
R2 0.8686 0.8686 0.8684 0.7044 0.7383 0.9949
R̄2 0.8684 0.8684 0.8682 0.7039 0.7379 0.9949
R̄2(AIC) 0.8682 0.8682 0.8680 0.7035 0.7375 0.9949
R̄2(SC) 0.8665 0.8664 0.8663 0.6996 0.7340 0.9948
R̄2(HQ) 0.8677 0.8676 0.8675 0.7022 0.7364 0.9949
R̄2(Jp) 0.8682 0.8682 0.8680 0.7035 0.7375 0.9949
R̄2(Sp) 0.8682 0.8681 0.8680 0.7035 0.7375 0.9949
R̄2(GCV ) 0.8682 0.8682 0.8680 0.7035 0.7375 0.9949

Note: Same values occur due to rounding decimals.

mance due to the potential over-fitting problem. Models with outstanding in-sample

performance may not guarantee the same prediction accuracy for out-of-sample data.

The ability of random forests to fit external data may be suspected because the large

R2 of random forests can be produced by taking an overly complex approximation to

the training data. To avoid the over-fitting problem, I conduct these parametric and

non-parametric estimations again but on the testing data set. Prediction results of

the testing data are evident in Figure 3 with observed prices on the horizontal axis

and predicted prices on the vertical axis. Still, the random forest algorithm presents

extraordinary prediction performance with R2 and R̄2 at almost 0.97, followed by

a series of linear models with R2 and R̄2 at 0.87. Predictions with bagging trees

report R2 and R̄2 that are lower than those of random forests, but they outweighs

the predictions with regression trees. Table 5 describes optional information crite-

ria in R̄2-type expressions that have been employed apart from R2 and R̄2. The

most useful information can be obtained through the price estimation with random

forests, which is followed by the methods of OLS and FGLS. Regression trees and

bagging trees are relatively weak in price imputation. Specifically, price prediction

with random forests scores 0.97 for R̄2(SC) which is the most parsimonious indica-
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tor among these information criteria. Note that in the last three rows the differences

between R̄2(Jp), R̄2(Sp) and R̄2(GV C) are eliminated because the number rounding

is associated with finite decimal places.

(a) OLS (b) FGLS1 (c) FGLS2

(d) Regression trees (e) Bagging trees (f) Random forests

Figure 3: Out-of-sample observed prices and predicted prices

4.3 Price indexes in product churn

Hedonic imputation covers more than pure price prediction. Price prediction is

used to further figure out the price indexes in the context of new and disappearing

products. Given any two periods of product churn, those products that appear in

both periods are defined as matched items. Unmatched items are composed of new

products and disappearing products. New products exist in the current period while

disappearing products exist in the base period. Since common price indexes such

as Fisher indexes and Törnqvist indexes are based on matched price data, missing
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Table 5: Out-of-sample prediction performance in R2 types

OLS FGLS Machine learning
Value
shares

Exponents Regression
trees

Bagging
trees

Random
forests

(1) (2) (3) (4) (5) (6)
R2 0.8690 0.8689 0.8690 0.7022 0.7382 0.9709
R̄2 0.8685 0.8684 0.8685 0.7011 0.7373 0.9708
R̄2(AIC) 0.8681 0.8679 0.8680 0.7000 0.7363 0.9707
R̄2(SC) 0.8644 0.8643 0.8643 0.6917 0.7290 0.9699
R̄2(HQ) 0.8669 0.8667 0.8668 0.6973 0.7339 0.9705
R̄2(Jp) 0.8681 0.8679 0.8680 0.7000 0.7363 0.9707
R̄2(Sp) 0.8681 0.8679 0.8680 0.7000 0.7363 0.9707
R̄2(GCV ) 0.8681 0.8679 0.8680 0.7000 0.7363 0.9707

Note: Same values occur due to rounding decimals.

values regarding these new and disappearing products need to be completed with

appropriate estimation models. The product churn can be simulated by the training

data set that consists of matched items and unmatched items. The testing data set

assists to provide actual price information of unmatched items. In the out-of-sample

test, I have compared the prediction accuracy of different methods on testing data.

These out-of-sample price estimations as well as actual prices in the testing data set

are applied to the construction of price indexes in product churn.

Taking the Törnqvist index as an example, de Haan (2010) considered the bilateral

index of two periods and proposed the single imputation:

P̂T,SI =
∏
i∈UM

(
p1
i

p0
i

)0.5(s0i+s
1
i ) ∏
i∈UD

(
p̂1
i

p0
i

)0.5(s0i ) ∏
i∈UN

(
p1
i

p̂0
i

)0.5(s1i )

(31)

UM is the set of matched products, UD is the set of disappearing products and UN is

the set of new products. Actual prices in the base period and in the current period

are denoted as p0
i and p1

i correspondingly, while missing values are estimated as p̂0
i

and p̂1
i for new and disappearing items. s0

i refers to the value share of product i in

the base period and s1
i refers to that in the current period. With price estimations p̂0

i
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and p̂1
i , the P̂T,SI price index can be computed. It features the “single” imputation

because only missing values of unmatched products are estimated to compute price

indexes. To apply the prediction method further, the double imputation can be

defined by replacing not only missing values but also actual prices of disappearing

and new products with estimated prices:

P̂T,DI =
∏
i∈UM

(
p1
i

p0
i

)0.5(s0i+s
1
i ) ∏
i∈UD

(
p̂1
i

p̂0
i

)0.5(s0i ) ∏
i∈UN

(
p̂1
i

p̂0
i

)0.5(s1i )

(32)

If price estimations are systematically biased, allowing numerators and denomina-

tors to be both estimated prices in the double imputation may cancel out the bias.

Similarly, the full imputation is defined by replacing all prices of matched and un-

matched products with estimated prices:

P̂T,FI =
∏
i∈UM

(
p̂1
i

p̂0
i

)0.5(s0i+s
1
i ) ∏
i∈UD

(
p̂1
i

p̂0
i

)0.5(s0i ) ∏
i∈UN

(
p̂1
i

p̂0
i

)0.5(s1i )

=
∏
i∈U0

(
p̂1
i

p̂0
i

)0.5(s0i ) ∏
i∈U1

(
p̂1
i

p̂0
i

)0.5(s1i )
(33)

The hedonic imputation of Törnqvist indexes can be extended to a variety of price

indexes. As Diewert et al. (2017) highlighted, the essence of undertaking new and

disappearing products for constructing price indexes is to assign zero quantities to

these missing products. Value shares will not be affected by estimated prices because

zero quantities multiplied by any prices are still zero values. For instance, the single

imputation of Laspeyres indexes can be defined as:

P̂L,SI =
∑
i∈UM

s0
i

(
p1
i

p0
i

)
+
∑
i∈UD

s0
i

(
p̂1
i

p0
i

)
+
∑
i∈UN

s0
i

(
p1
i

p̂0
i

)
(34)

Note that the term regarding new products in the right hand side is technically

zero as value shares of new products in the base period (s0
i with i ∈ UN) are zero. I
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keep this term to clarify the distinction between different price indexes. For Paasche

indexes, the single imputation can be defined as:

P̂P,SI =

[∑
i∈UM

s1
i

(
p1
i

p0
i

)−1

+
∑
i∈UD

s1
i

(
p̂1
i

p0
i

)−1

+
∑
i∈UN

s1
i

(
p1
i

p̂0
i

)−1
]−1

(35)

The term regarding disappearing products in the right hand side is also zero, though

it remains in the formula for clarification. Taking the geometric mean of Laspeyres

indexes and Paasche indexes with the single imputation results in Fisher indexes

P̂F,SI . In terms of the double imputation and the full imputation, Fisher indexes

can be deduced in the same way as Törnqvist indexes by replacing missing prices

or actual prices with estimated prices.

Table 6 shows the rates of correct predictions for Fisher indexes and Törnqvist

indexes with the single, double and full imputation during 52 weeks. I compare he-

donic imputation indexes with benchmark indexes and determine the percentage of

correct predictions. Benchmark indexes are constructed with actual prices from the

testing data set, which replaces the missing prices of new products and disappearing

products. Predicted price indexes that are within ±0.5% of benchmark indexes are

considered to be correct predictions. Indexes 1–6 are related to OLS, FGLS with

value shares, FGLS with the natural exponential function, regression trees, bagging

trees and random forests respectively. For Fisher indexes with the single imputation,

it can be seen that the imputation with random forests has the highest percentage

of correct predictions, that is, Index 6 with 58.82% precision. The accuracy of Index

6 drops to 50.98% when using the double imputation that includes more estimated

prices. Note indexes with linear estimations have gained accuracy improvement

when I switch from the single imputation to the double imputation. This is because

the upward bias of linear price estimations can be relatively reduced in the double

imputation. The effect of cancelling out systematic errors is also confirmed by the

full imputation. Index 1 (where prices are overestimated) with the full imputation
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still obtains 41.18% correct predictions. Fisher indexes with hedonic imputation

validate the impressive prediction performance of random forests for the single im-

putation, and demonstrate accuracy gains of cancelling out price estimation biases

in double imputation and full imputation. For Törnqvist indexes, similar patterns

are observed.

In addition to Fisher indexes and Törnqvist indexes, I compute GEKS indexes to

ensure the requirement of circularity. The GEKS method was proposed by Gini

(1931), Eltetö and Köves (1964) and Szulc (1964). It takes the geometric mean of

price index ratios. Suppose Pit is the bilateral price index between periods i and

t, and Pjt is the bilateral price index between periods j and t. The GESK index

between periods i and j is defined with the base t taking all periods:

GEKSij =
T∏
t=1

(Pit/Pjt)
1
T (36)

GEKS indexes based on Fisher and Törnqvist indexes can be seen in Table 6. Index

6 which is associated with random forests has displayed approximately 60% correct

predictions in the single imputation for the GEKS (Fisher) and GEKS (Törnqvist)

methods. The OLS method in the single imputation has a better performance than

random forests for GESK (Fisher) indexes, but its prediction accuracy dramati-

cally decreases for GEKS (Törnqvist) indexes. It is reasonable to consider random

forests when conducting the single imputation for price indexes. The double and

full imputations serve to remove the price prediction bias of linear estimations when

I make column-wise comparison. But their percentages of accuracy are much lower

than the single imputation. The ability of cancelling out price estimation biases for

multilateral indexes are less effective than for bilateral indexes.
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Table 6: Accuracy of price indexes with hedonic imputation

OLS FGLS Machine learning
Types Index 1 Index 2 Index 3 Index 4 Index 5 Index 6

Fisher Single 54.90% 47.06% 52.94% 19.61% 19.61% 58.82%
Double 56.86% 52.94% 56.86% 7.84% 9.80% 50.98%

Full 41.18% 23.53% 35.29% 7.84% 5.88% 27.45%

Törnqvist Single 37.25% 31.37% 37.25% 21.57% 25.49% 62.75%
Double 47.06% 39.22% 49.02% 9.80% 13.73% 49.02%

Full 45.10% 11.76% 45.10% 5.88% 5.88% 27.45%

GEKS Single 68.63% 52.94% 68.63% 15.69% 17.65% 58.82%
(Fisher) Double 31.37% 33.33% 33.33% 3.92% 3.92% 17.65%

Full 21.57% 13.73% 21.57% 3.92% 3.92% 13.73%

GEKS Single 37.25% 25.49% 35.29% 27.45% 23.53% 62.75%
(Törnqvist) Double 9.80% 11.76% 9.80% 7.84% 7.84% 17.65%

Full 11.76% 5.88% 11.76% 1.96% 3.92% 17.65%

Note: Estimations within a range of ±0.5% to actual values are considered as accurate
predictions. Bilateral indexes are calculated using the fixed base. Multilateral indexes
are calculated using the GEKS method. The series of Index 1 is constructed using OLS to
estimate the prices of new and disappearing products. Indexes 2–6 are related to FGLS
with value shares, FGLS with exponents, regression trees, bagging trees and random
forests.

4.4 Variable importance

In-sample and out-of-sample tests have manifested the predictive ability of random

forests on scanner data. Indexes in product churn verify the reliability of random

forests in hedonic imputation. With the quality of being precise in price prediction

and index computation, random forests are recommended for hedonic imputation

that facilitates the price index of unbalanced data. However, researchers may adhere

to OLS and FGLS despite of the predictive ability of random forests. They prefer the

economic interpretation of linear models, that is, estimated coefficients that indicate

the response of prices to one variable while other variables remain unchanged (see
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Table 7). The economic interpretation is one of the most frequently stated problems

with machine learning. The machine learning approach is often challenged as a

“black box” compared with specifically estimated coefficients in OLS and FGLS

(Prasad et al., 2006).

Table 7: Regression results of logarithmic product prices

OLS FGLS
Value shares Exponents

z1 1.705∗∗∗ 1.700∗∗∗ 1.718∗∗∗

(0.005) (0.005) (0.005)

z2 1.332∗∗∗ 1.335∗∗∗ 1.318∗∗∗

(0.005) (0.005) (0.005)

z3 0.483∗∗∗ 0.481∗∗∗ 0.503∗∗∗

(0.005) (0.005) (0.005)

z4 0.480∗∗∗ 0.482∗∗∗ 0.494∗∗∗

(0.005) (0.005) (0.005)

z5 0.486∗∗∗ 0.488∗∗∗ 0.502∗∗∗

(0.005) (0.005) (0.005)

constant 0.484∗∗∗ 0.490∗∗∗ 0.461∗∗∗

(0.012) (0.011) (0.011)

week Yes Yes Yes
Observations 36,437 36,437 36,437
F Statistic 4,295.004∗∗∗ 4,262.311∗∗∗ 4,400.363∗∗∗

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

For the purpose of model interpretation, I introduce variable importance measures

of random forests. Although the response of prices to one unit change of product

characteristics cannot be quantified in random forests, variable importance speci-

fies the importance of independent variables and carries out the relative impact of

product characteristics to prices.
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Two types of variable importance measures can be adopted: the increase in mean

squared errors or the increase in node purity (Breiman, 2001, 2002). The first

practice specifies the change of MSE and is basically used for numerical responses.

The second practice specifies the sum of reduced node impurities, that is, the variety

of nodes when one variable is split. I focus on the first measure in this paper as

it provides accuracy comparison with respects to numerical variables. Recall that

bootstrapped samples are drawn from the scanner data with replacement and result

in unselected data out of bag. I denote these OOB data as Ωc
b. It presents the

complement of bootstrapped data Ωb given that Ω is the universe that contains

all observations. The OOB scanner data set is initially used to measure the MSE,

denoted as ζb for the b-th tree that grows on the b-th bootstrapped data bag:

ζb =
∑

(y,x)∈Ωcb

1

N(Ωc
b)

(y − ŷ(xj,x−j))
2 (37)

N(Ωc
b) refers to the number of observations in Ωc

b, xj denotes the j-th variable that

needs to be tested, and x−j denotes variables except xj. y is the actual value in the

OOB data and ŷ is the predicted value by running estimation models on the OOB

data. The j-th variable xj of the OOB data is then permuted as x̃j. Estimation

models are conducted on x̃j and x−j to generate the predicted value ŷ, measuring

a new MSE for the b-th tree:

ζjb =
∑

(y,x)∈Ωcb

1

N(Ωc
b)

(y − ŷ(x̃j,x−j))
2 (38)

ζb measures the MSE given original variables while ζjb measures the MSE given per-

muted variables. Differences between ζjb and ζb are averaged on all bootstrapped

samples to compute the change of MSE that measures the impact of variable per-

mutation:

∆MSE =
1

B

B∑
b=1

(ζjb − ζb) (39)
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If the independent variable xj is highly related to the dependent variable y, a promi-

nent change in MSE will be produced after the permutation of xj in the OOB data.

∆MSE supports the economic interpretation of random forests because the relative

contribution of time effects and product characteristics to prices can be detected.

week

z5

z4

z3

z2

z1

300 400 500 600 700

%IncMSE

Figure 4: Variable importance in random forests

In Figure 4, there is a clear trend of decreasing importance from the product char-

acteristic z1 to the product characteristic z5. The variable z1 has strongly supported

the prediction of product prices, followed by the variable z2. Variables z3, z4 and

z5 share almost equivalent importance in price prediction. The variable importance

comparison indicates that z1 has the highest impact on product prices. The impact

of z2 is slightly less than z1. Almost identical contributions of z3, z4 and z5 to prod-

uct prices are spotted. Recall β1 = 0.4, β2 = 0.3, β3 = β4 = β5 = 0.1 in the CES

separable sub-utility function. The relative size of impacts estimated for product

characteristics is consistent with these coefficients in the set-up of hedonic prices.

37



4.5 Elasticity of substitution

I have assumed that hedonic prices follow a Cobb-Douglas form of product charac-

teristics by choosing unit elasticity of substitution in the CES function. This is an

intermediate status between the Leontief type where product characteristics cannot

be substituted internally, and the linear type where product characteristics can be

substituted equivalently. The price prediction capacity of random forests in the sce-

nario with unit elastic utility has been confirmed. To provide a sensitivity analysis of

random forests as well as other models, I allow the elasticity of substitution to vary

between 0.01 and 5.01 so that the hedonic price prediction approximately extends

to a Leontief sub-utility function and a linear sub-utility function. Out-of-sample

metrics are recorded when σ increases with a step size at 0.02.

Figure 5a depicts the out-of-sample R̄2 of linear estimations and machine learning

estimations. When product characteristics are complements (σ = 0.01), tree-based

models show higher R̄2 in price prediction than linear models. This is because tree-

based models are compatible with the data structure of hedonic prices produced by

a Leontief sub-utility function. Since the Leontief function rules out substitutability

between product characteristics, hedonic prices are essentially determined by the

minimal value among product characteristics. The increase in prices is conditional

on a joint contribution from product characteristics, rather than the increase in one

characteristic. Recall that predicted values of regression trees will not necessarily

fluctuate with one increasing variable. The tree structure ensures that the change

of prices mainly depends on multiple independent variables. Therefore, tree-based

models are more suitable for hedonic prices when substitutability is absent between

product characteristics.

With the elasticity of substitution increasing, the performance of linear models turns

to improve. The R̄2 of OLS surpasses that of regression trees with σ = 0.65, and
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Figure 5: Sensitivity analysis of hedonic price prediction
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surpasses that of bagging trees with σ = 0.73. It slightly outweighs the R̄2 of the

random forests for σ >1.81. When product characteristics are substitutes (σ =

5.01), linear models demonstrate extraordinary prediction accuracy while regression

trees and bagging trees only explain about two-thirds of price variability. This is

reasonable because hedonic prices are approaching a linear relationship with product

characteristics when elasticity of substitution is large enough in the separable sub-

utility function. The tree structure is not well matched to the linear relationship.

However, the R̄2 of random forests is still remarkable at around 0.95 as this algorithm

adopts bootstrapped samples and random selection of variables to modify the tree

structure. The performance of random forests is reliable regardless of the increasing

σ. For the situation that the utility type of consuming behaviour is uncertain,

random forests can always serve as a satisfactory method in price prediction.

Other R̄2-type expressions of in-sample and out-of-sample tests have exhibited al-

most indistinguishable values so it is unnecessary to repeat the sensitivity analysis

with these expressions. As an additional indicator, the root of mean squared er-

rors (RMSE) is used. The trend of out-of-sample RMSE for linear estimations and

machine learning estimations is displayed in Figure 5b. Models with lower RMSE

are considered to have a better prediction capacity. It can bee seen from the plot

that linear estimations become accurate with increasing elasticity of substitution.

Tree-based models are disadvantaged when hedonic prices are linear in product char-

acteristics, but the prediction performance of random forests is still acceptable. The

evidence from RMSE supports the remarks on price prediction using R̄2.

5 Evidence from the Dominick’s dataset

To validate the results from simulated scanner data, I conduct a robustness check

and draw real scanner data from the Dominick’s database that is published by James
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M. Kilts Center, University of Chicago Booth School of Business. The Dominick’s

database covers historical information on prices and product characteristics obtained

by scanning bar codes. Both category-specific files and general files of scanner

data are contained in the database, providing a variety of commodities for hedonic

imputation. I select frozen juices in category-specific files for the robustness testing.

Summary statistics for numeric variables and categorical variables are presented in

Table A1 and Table A2. The variable price refers to the retail price of a bundle of

products and the variable quantity indicates the number of bundles sold. Note that

the variable quantity is only utilised to generate value shares and is not adopted as

one of product characteristics. Product characteristics from the Dominick’s database

are categorical variables, including week, fruit and size in Table A2. The variable

week is originally numerical, and it is converted to be categorical to present fixed

time effects. Product flavours from fruit are captured from product names. The

variable size denoting product sizes is taken as a categorical variable considering its

non-linear impact on hedonic prices. Other variables, like move, qty, sale and ok

are not listed but they are essential to generate variables as required. The variable

move (the number of items sold) is divided by the variable qty (the number of items

in a bundle) to generate quantity in this paper. Suspected observations with ok

equal to 0 or sale equal to “G” are removed. With these filter criteria, the data

set of frozen juices is trimmed to include 150,437 observations that are randomly

divided into the training data set and the testing data set with a common ratio of

70% versus 30%. Once again, the training set is adopted to generate estimation

models and subsequently these models can be evaluated in the testing data set.

Figure A1 compares observed prices and fitted prices (both in logarithmic forms)

for OLS, FGLS with value share weights (FGLS1), FGLS with exponential weights

(FGLS2), regression trees, bagging trees and random forests in the training data

set. R2 and R̄2 metrics of FGLS1 and FGLS2 are lower than those of OLS. It means
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that dealing with the heteroscedasticity problem does not improve prediction abil-

ities. The special prediction pattern of regression trees is plotted in Figure A1d.

A few levels of predicted values are generated due to the tree-based algorithm. To

allow predicted values to be between discrete levels, bagging trees use bootstrapped

samples and average prediction values over all trees. This leads to prediction ac-

curacy gains in bagging trees. Prediction performance is further improved when

random forests choose randomly selected variables for price prediction. In addition

to in-sample plots, prediction results of the testing data are evident in Figure A2.

Still, the random forest algorithm provides the best prediction, followed by bagging

trees and regression trees. The prediction with OLS reports lower R2 and R̄2 than

those of the prediction with tree-based models, but it outweighs the prediction with

FGLS1 and FGLS2. A closer inspection of R̄2-type expressions of in-sample and

out-of-sample tests can be seen in Table A3, which displays similar information to

what is conveyed by these plots.

Estimated coefficients that indicate the response of prices to one variable while other

variables remain unchanged are listed in Table A4. Product sizes are statistically

significant in determining hedonic prices. Detailed coefficients of week indexes and

fruit flavours are not displayed because of excessive dummies, though most of these

dummies are significant in regressions. Variable importance that specifies the rela-

tive impact of product characteristics to prices is plotted in Figure A3. The variable

size has the largest impact on price prediction, followed by variables fruit and

week. Random forests take categorical variables as factor variables in computation

so that the importance measures of size, fruit and week are incomparable with the

coefficients of dummies in linear models.

The replication of models on the Dominick’s dataset confirms the robustness of the

results from simulated scanner data. Random forests are the best fitted tree-based

model in hedonic price prediction. The tree structure helps to explain consumer
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preferences where product characteristics are not substitutable. It accounts for large

R̄2-type expressions of tree-based models. Linear models fall behind about the price

prediction of frozen juice data since a linear relationship between hedonic prices and

product characteristics does not truly capture the behaviour of consumers. However,

the accuracy of price indexes on the real scanner data cannot be examined. Prices of

new products in base periods and prices of disappearing products in current periods

are not available. It is not reasonable to decide the best model in computing price

indexes when the benchmark is missing.

6 Conclusion

The motivation of this paper is to improve the prediction accuracy of hedonic impu-

tation for unmatched products that enter or exit in multiple periods. A number of

models are compared, including OLS, FGLS with value share weights, FGLS with

exponential weights, regression trees, bagging trees and random forests. Linear re-

gression models are adopted by following common approaches of hedonic imputation

while tree-based machine learning models are adopted because tree structures are

compatible with the behaviour foundation where product characteristics are not

substitutes for consumers. I simulate scanner data with product prices and char-

acteristics to test these models. The data generating process is based on constant

elasticity of substitution and the elasticity is allowed to vary in a wide range. Ei-

ther elastic utility or inelastic utility can be approached with appropriate elasticity

coefficients.

Using unit elastic utility as the benchmark, the model comparison between linear

hedonic regression and tree-based machine learning confirms the extraordinary pre-

diction capability of random forests. Random forests are the best fitted model due

to large in-sample and out-of-sample R̄2-type measures (close to 1). The predic-
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tion performance of random forests is also validated by the price index construction

where bilateral indexes and multilateral indexes are computed with predicted prices

of unmatched products. Price indexes with random forests display approximately

60% correct prediction values that are stable in the single, double and full imputa-

tions. Although causal effects cannot be quantified, random forests produce variable

importance measures that specify relative effects of product characteristics and time

periods on prices. The variable importance estimated for product characteristics is

consistent with coefficients in the hedonic set-up.

In addition to the benchmark of unit elastic utility, I allow the elasticity of substi-

tution to vary so that the separable sub-utility function underlying hedonic prices

approximately extends to a Leontief function or a linear function. When prod-

uct characteristics are complements, tree-based models show better price prediction

than linear models. Since a Leontief sub-utility function rules out substitutability

between product characteristics, the increase in prices is conditional on a joint con-

tribution from product characteristics. The tree structure ensures that the change

of prices mainly depends on multiple product characteristics and is therefore more

suitable for explaining hedonic prices when substitutability is absent. When product

characteristics are substitutes, linear models demonstrate extraordinary prediction

accuracy because the separable sub-utility function is linear in product character-

istics. The standard tree structure is no longer matched to the linear relationship.

However, the performance of random forests is still remarkable as this algorithm

employs random samples and variables to revise the standard tree structure. The

price prediction of random forests is stable whether the substitutability between

product characteristics is available or not.

The model performance on simulated scanner data and real scanner data in this

paper suggests that machine learning approaches, especially random forests, can be

effectively employed for hedonic imputation when new products and disappearing
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products exist as unmatched items. Although the paucity of causal explanations in

machine learning remains to be concerned, using these tree-based models is suitable

for hedonic prices from the perspective of prediction accuracy. Since product charac-

teristics are not perfectly substitutes in practice, the pricing mechanism of products

is likely to approach a Leontief function that shares some common features with a

tree-based pricing type. This allows tree-based machine learning to fit scanner data

and to produce accurate price prediction. Within the context of hedonic imputation,

prediction accuracy is more essential than causal explanations. The focus of hedonic

imputation is to estimate missing prices so the response of prices to the change of

product characteristics or time dummies is not a priority. Standard econometric

approaches in hedonic regression like FGLS attempt to improve prediction accuracy

by excluding heteroscedasticity, but coefficients are just slightly revised and the ac-

curacy enhancement is insignificant. It is advisable to introduce machine learning

methods to hedonic models so that missing prices can be better estimated and price

indexes can be better computed for unmatched products.
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Appendices

Table A1: Summary statistics of numerical variables

Variables Definitions Datasets Mean Std. Dev Min Max

price Retail prices ($) Full 1.407 0.490 0.360 3.000
Training 1.409 0.491 0.360 3.000
Testing 1.403 0.486 0.360 3.000

quantity Bundles Full 43.682 112.411 0.333 4,838
Training 43.714 112.114 0.333 4,838
Testing 43.607 113.104 0.500 4,121

Note: The full frozen juice data set with 150,437 observations is randomly di-
vided into training data with 105,329 observations and testing data with 45,108
observations. The ratio follows 70% versus 30% as a common proportion of data
partitions.

Table A2: Summary statistics of categorical variables

Variables Definitions Datasets Levels Top Three Frequent Items

week Week indexes Full 52 43, 50, 51
Training 52 43, 42, 50
Testing 52 51, 45, 50

fruit Product flavours Full 14 ORG, LEMO, GRAPE
Training 14 ORG, LEMO, GRAPE
Testing 14 ORG, GRAPE, LEMO

size Product sizes Full 6 12 OZ, 6 OZ, 16 OZ
Training 6 12 OZ, 6 OZ, 16 OZ
Testing 6 12 OZ, 6 OZ, 16 OZ

Note: The full frozen juice data set with 150,437 observations is randomly divided
into training data with 105,329 observations and testing data with 45,108 observa-
tions. The ratio follows 70% versus 30% as a common proportion of data partitions.
Levels denote the categorical level of each variable. Flavours are recognisable from
brand names. “ORG” is short for oranges and “LEMO” is short for Lemonade. Prod-
uct sizes are taken as a categorical variable due to their non-linear impact on hedonic
prices.
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(a) OLS (b) FGLS1 (c) FGLS2

(d) Regression trees (e) Bagging trees (f) Random forests

Figure A1: In-sample observed and predicted frozen juice prices
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(a) OLS (b) FGLS1 (c) FGLS2

(d) Regression trees (e) Bagging trees (f) Random forests

Figure A2: Out-of-sample observed and predicted frozen juice prices
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Table A3: Prediction performance on frozen juice data in R2 types

OLS FGLS Machine learning
Value
shares

Exponents Regression
trees

Bagging
trees

Random
forests

(1) (2) (3) (4) (5) (6)
In-sample prediction
R2 0.7651 0.6788 0.7608 0.7743 0.7756 0.7974
R̄2 0.7650 0.6786 0.7606 0.7741 0.7754 0.7972
R̄2(AIC) 0.7648 0.6784 0.7605 0.7740 0.7753 0.7971
R̄2(SC) 0.7633 0.6764 0.7590 0.7726 0.7739 0.7958
R̄2(HQ) 0.7644 0.6778 0.7600 0.7736 0.7748 0.7967
R̄2(Jp) 0.7648 0.6784 0.7605 0.7740 0.7753 0.7971
R̄2(Sp) 0.7648 0.6784 0.7605 0.7740 0.7753 0.7971
R̄2(GCV ) 0.7648 0.6784 0.7605 0.7740 0.7753 0.7971

Out-of-sample prediction
R2 0.7623 0.6768 0.7582 0.7730 0.7744 0.7947
R̄2 0.7619 0.6763 0.7578 0.7727 0.7740 0.7944
R̄2(AIC) 0.7616 0.6758 0.7574 0.7723 0.7737 0.7941
R̄2(SC) 0.7584 0.6715 0.7542 0.7693 0.7706 0.7914
R̄2(HQ) 0.7606 0.6745 0.7564 0.7714 0.7727 0.7932
R̄2(Jp) 0.7616 0.6758 0.7574 0.7723 0.7737 0.7941
R̄2(Sp) 0.7616 0.6758 0.7574 0.7723 0.7737 0.7941
R̄2(GCV ) 0.7616 0.6758 0.7574 0.7723 0.7737 0.7941

Note: Same values occur due to rounding decimals.
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Table A4: Regression results of frozen juice prices

OLS FGLS
Value shares Exponents

size (base=10 OZ)

11.5 OZ 0.146∗∗∗ 0.044∗∗∗ 0.166∗∗∗

(0.004) (0.007) (0.004)

12 OZ 0.031∗∗∗ −0.083∗∗∗ 0.084∗∗∗

(0.003) (0.004) (0.004)

16 OZ 0.252∗∗∗ 0.227∗∗∗ 0.317∗∗∗

(0.003) (0.005) (0.004)

6 OZ −0.605∗∗∗ −0.623∗∗∗ −0.563∗∗∗

(0.003) (0.005) (0.003)

7.5 OZ 0.398∗∗∗ 0.275∗∗∗ 0.447∗∗∗

(0.005) (0.008) (0.004)

constant 0.112∗∗∗ 0.125∗∗∗ 0.042∗∗∗

(0.005) (0.006) (0.005)

week Yes Yes Yes

fruit Yes Yes Yes
Observations 105,329 105,329 105,329
F Statistic 4,968.887∗∗∗ 2,968.019∗∗∗ 8,989.181∗∗∗

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. week and fruit are
not displayed in detail in this table due to excessive dummies.
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Figure A3: Variable importance in random forests on frozen juice data
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