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Abstract

We propose a novel multivariate approach for the estimation of intergenerational transition
matrices. Our methodology is grounded on the assumption that individuals’ social status is
unobservable and must be estimated. In this framework, parents and offspring are clustered
on the basis of the observed levels of income and occupational categories, thus avoiding any
discretionary rule in the definition of class boundaries. The resulting transition matrix is a
function of the posterior probabilities of parents and young adults of belonging to each class.
Estimation is carried out via maximum likelihood by means of an expectation-maximization
algorithm. We illustrate the proposed method using National Longitudinal Survey Data from
the United States in the period 1978-2006.
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1 Introduction

The use of multivariate statistical methods in studies of welfare economics is becoming increasingly

popular. Multidimensional poverty analysis is adopting latent variables models grounded on the

fact that observed heterogeneity in the population is due to unobservable components (see, e.g.,

Moisio 2004, Whelan & Maitre 2006, Krishnakumar 2008, Dotto et al. 2018, Tullio & Bartolucci

2019). The use of latent variables models has also spread to the inequality of opportunity literature.

For example, Li Donni et al. (2015) propose to identify social types with a latent class model.

However, applications of multivariate methods in the study of intergenerational mobility are

not common. Economic studies on intergenerational mobility mostly focus on income mobility. For

extended coverage of the measurement of income mobility, refer to the survey by Jäntti & Jenkins

(2013). Still, as argued by Jäntti & Jenkins (2013), there is no general agreement in the mobility

literature about the best way of measuring the phenomenon. The most popular measures are

intergenerational elasticity and intergenerational correlation, useful summary measures that may

hide interesting details about mobility at different points of the joint distribution of parental and

adult child incomes. For instance, it could be the case that mobility is not uniform along the income

distribution. Generally speaking, these standard ways of measuring mobility are not informative

about nonlinearities across the income distribution. Several techniques have been adopted to deal

with this issue, such as splines or locally weighted regressions, kernel density and quantile regression

approaches (see, for example, Bratsberg et al. 2007, Eide & Showalter 1999, Grawe 2004, Mocetti

2007).

A common strategy for dealing with nonlinearities is to estimate transition matrices. A transi-

tion matrix documents the movement of individuals across different income classes or occupational

categories. Transition matrices have been adopted as a tool for measuring mobility in economics

and sociology. Among the several empirical papers in economics that adopt transition matri-

ces, some of the most frequently cited are Corak & Heisz (1999), O’Neill et al. (2007) as well

as Bhattacharya & Mazumder (2011). In quantitative sociology, transition matrices are usually

known as class mobility tables; an important contribution in this literature is provided by Erikson

& Goldthorpe (1992), who developed a class schema and then showed the movement among the

classes through mobility tables. The use of transition matrices is also widespread in the axiomatic

literature on intergenerational mobility that tries to identify the best mobility measure by focusing
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on the properties that the index should respect; see the original contribution by Shorrocks (1978)

and the more recent works by Fields & Ok (1996) and Checchi & Dardanoni (2002).

The main advantage of the use of transition matrices is that they offer a more detailed de-

piction of intergenerational mobility. They also facilitate the interpretation of the phenomenon:

Mobility measured through transition matrices may be viewed as a merely reranking or positional

phenomenon, in which individuals switch income or occupational positions across generations. A

key issue with this methodology consists of defining the thresholds between classes. Formby et al.

(2004) distinguish between quantile and size transition matrices. In the case of quantile transi-

tion matrices, class boundaries are determined to have the total number of sample units equally

divided across classes, in the distribution of parents and in the distribution of adult children. In

size transition matrices, class thresholds are exogenously set. Different approaches lead to distinct

interpretations of mobility as well as different sampling distributions.

Our main contribution is to propose an innovative model to appropriately deal with the mea-

surement of intergenerational class mobility in a multivariate framework1. Formally, our model

belongs to the class of latent Markov models (LMMs) (Bartolucci et al. 2013), also known as

hidden Markov models (HMMs) for longitudinal data (Zucchini & MacDonald 2009) and latent

transition analysis (LTA) models (Collins & Lanza 2010). This model deals effectively with two

crucial issues in the methodological literature on intergenerational mobility outlined above. Treat-

ing the individual status as a latent variable, we incorporate the popular concept that the status

is not observable but may be only proxied. As proxies for individuals’ social status, we use income

and occupation, in line with the previous literature on intergenerational mobility2. Moreover, the

problem of class boundaries when using transition matrices is solved endogenously with the estima-

tion algorithm, which classifies individuals based on the posterior probabilities of belonging to each

class rather than setting thresholds. Therefore, by estimating the model, it is possible to assign

each individual to a class, discussing the main features of the class itself and computing mobility

measures based on the estimated transition matrix that encompasses the information coming from

the income level and the occupation performed. Finally, the model allows the number of social

classes to change across the two generations, following the approach proposed by Anderson et al.

1The model may be easily extended to study intragenerational mobility, that is, the transition in individuals’
status positions over the life cycle.

2For a complete survey on mobility with various statuses’ proxies see Black & Devereux (2011). For occupational
mobility, we refer to the papers by Long & Ferrie (2013) and Mazumder & Acosta (2015).
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(2019).

The paper is organized as follows. In Section 2, we formulate the proposed specification. In

Section 3, we present the empirical application based on U.S. data from the National Longitudinal

Survey of Youth (NLSY79). This section includes the data description, the discussion of the

sample selection rules as well as the main empirical results. Finally, in Section 4, we provide some

concluding remarks.

2 A mixed-type data model for intergenerational mobility

To develop a model for intergenerational mobility, we rely on the basic LMM formulation (Bar-

tolucci et al. 2013). The main assumption is that the social status of an individual is unobservable

and can be measured based on a set of observable variables, the manifest variables, which act as

proxies for the individual latent characteristic.

The use of LMMs to study intergenerational mobility presents some peculiarities with respect

to standard applications of this type of model. The first peculiarity is that the number of time

occasions is limited. In studies of intergenerational mobility, the number of time occasions is usually

equal to two, coinciding with parental and offspring generations (there have rarely been studies

that analyze more than two generations of individuals; see for instance Adermon et al. 2019). In

typical applications of LMMs, the number of time periods is usually greater than or equal to three.

For an example of an LMM with only two time periods, see Collins & Lanza (2010, Chapter 7.3).

The second peculiarity is that the individuals are different in the two time occasions (e.g., fathers

and sons). Nonetheless, if we consider the family (or dynasty) as the unit of analysis, this could be

considered constant over time, and therefore, respecting the main features of an LMM. However,

we propose a formulation with one grouping variable for each generation, to better explicate this

feature.

2.1 The model

Let T = 2 be the number of time periods, and suppose that our units of observation are n parent-

adult child couples c = 1, . . . , n. For each generation t, we observe a realization yct of the bivariate

vector of manifest variables Y ct = (Y1ct, Y2ct). Assume that Y1ct is a continuous variable (e.g.,

income), and Y2ct is categorical (e.g., the type of occupation). Define Ỹ c as the vector of the
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manifest variables stacked along the time dimension and denote its realization as ỹc. In other

words, the manifest variables of couple c in period t = 1 refer to some measure of income and

occupation of the parents’ generation, while in t = 2 the same variables refer to adult children.

Suppose the existence of two discrete latent grouping variables capturing the social status, one at

t = 1 (first generation) and one at t = 2 (second generation), Fc and Sc, respectively, that are

collected in the random vector: U c = (Fc, Sc). We allow the number of latent classes to be different

in the two generations, that is, to be time-specific: kt, for t = 1, 2. As mentioned, the main interest

of the model lies in the distribution of the latent process U c. We refer to the initial and transition

probabilities as:

πv = P (Fc = v), v = 1, . . . , k1,

πs|v = P (Sc = s|Fc = v), v = 1, . . . , k1, s = 1, . . . , k2,

for c = 1, . . . , n, with πv ≥ 0, πs|v ≥ 0,
∑

v πv =
∑

s πs|v = 1, ∀v, s. The probability distribution

of U c is given by:

P (U c = u) = πf × πs|v, (1)

where u = (v, s) denotes a realization of the random vector U c.

With respect to the measurement component, we make use of the local independence assumption,

also known as the contemporaneous independence assumption. The manifest variables are assumed

to be independent, conditional on the latent process: If we knew the latent state of an individual at

time t, then the realization of a manifest variable would not help in predicting the other manifest,

as the latent variable is the only explanatory factor of the observable variables. This assumption

implies:

fỸ c|Uc
(ỹc|uc) =

2∏
r=1

f
(1)
Yrc1|Fc

(yrc1|v)
2∏

r=1

f
(2)
Yrc2|Sc

(yrc2|s), (2)

where we use f (t) as a generic symbol for a density or probability function. Note that the conditional

distribution of each variable Yrct given the latent state is allowed to vary over time; that is, it is

characterized by time-specific parameters, as indicated by the superscript (t).

We assume that the components of the continuous variable are Gaussian functions with state-
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specific means and variances:

φ(y1c1;µv, σ
2
v) = fY1c1|Fc(y1c1|v),

φ(y1c2; ξs, τ
2
s ) = fY1c2|Sc(y1c2|s),

for v = 1, . . . , k1, s = 1, . . . , k2. Let j be the number of categories of Y2ct, t = 1, 2. The number of

categories, thus, is fixed across generations. Denote the conditional probabilities of Y2ct as:

η
(1)
y|v = fY2c1|Fc(y|v),

η
(2)
y|s = fY2c2|Sc(y|s),

for y = 1, . . . , j, and v = 1, . . . , k1, s = 1, . . . , k2, with
∑

y η
(t)
y|u = 1, u = v, s. Again, the measure-

ment model’s parameters refer to both generations. For instance, µ41 and σ41 represent the mean

and standard deviation of the income density associated with the fourth class of the first genera-

tion, while η
(2)
3|1 is the probability of being in the third occupational category for a second-generation

individual belonging to the first class.

Making use of Equations (1) and (2), we obtain the marginal distribution of the manifest

variables (the manifest distribution) by marginalizing over the distribution of the latent process:

fỸ c
(ỹc) =

∑
u

P (U c = u) fỸ c|Uc
(ỹc|u)

=

k1∑
v=1

k2∑
s=1

πv × πs|v × φ(y1c1;µv, σ
2
v)× φ(y1c2; ξs, τ

2
s )× η(1)y2c1|v × η

(2)
y2c2|s. (3)

Thus, the estimation of fỸ c
(ỹc) requires summing over all the possible k1 × k2 configurations of

the vector u. This is done by resorting to the forward-backward recursions within the expectation-

maximization (EM) algorithm (Baum et al. 1970, Welch 2003) developed in the HMM literature

and implemented through suitable matrix notation (Bartolucci 2006, Zucchini & MacDonald 2009).

A straightforward interpretation of such a model arises. In particular, the following (and
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possibly rectangular) matrix:

Πk1×k2 =



π1|1 π2|1 . . . πk2|1

π1|2 π2|2 . . . πk2|2

...
...

. . .
...

π1|k1 π2|k1 . . . πk2|k1


,

that is, the matrix collecting the transition probabilities, may be interpreted as a matrix of in-

tergenerational mobility, where social statuses in both time periods are measured based on the

observed level of the manifest variables. Furthermore, the initial probabilities πv, v = 1, . . . , k1,

represent the sizes of the k1 social latent classes of the first generation, while the sizes of the second

generation’s k2 classes may be retrieved as

δs = P (Sc = s) =
∑
v

P (Sc = s|Fc = v)P (Fc = v),

for s = 1, . . . , k2.

The number of free parameters is equal to k1−1 in the initial distribution (πv), k2(k1−1) in the

transition distribution (πs|v), 2(k1+k2) for the Gaussian densities (µv, ξs, σ
2
v , τ

2
s ) and (k1+k2)(c−1)

for the categorical responses (η
(1)
y|v, η

(2)
y|s).

2.2 Maximum likelihood estimation

Under the formulation presented above, assuming independence of n sample units, the log-likelihood

of the model may be expressed in the following way:

`(θ) =
n∑

c=1

log fỸ c
(ỹc)

=
n∑

c=1

log

k1∑
v=1

k2∑
s=1

(πv × πs|v)× φ(y1c1;µv, σ
2
v)× φ(y1c2; ξs, τ

2
s )× η(1)y2c1|v × η

(2)
y2c2|s, (4)

where θ is the set of all the model parameters. Equation (4) can be maximized by means of the

EM algorithm (Dempster et al. 1977). The EM algorithm treats the individual latent states as
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missing data and finds the maximum likelihood estimates of the parameters in Equation (4) by

maximizing the complete data log-likelihood (CDLL).

In the CDLL, we assume we know all the individual states. The complete data thus corresponds

to the vectors (ỹc,uc) for each couple c. Let zcv = I{Fc = v}, pcs = I{Sc = s} and zcs|v = I{Fc =

v, Sc = s}, where I{·} is the indicator function taking value 1 if the argument is true. We can

write the CDLL as:

`(θ) =
n∑

c=1

k1∑
v=1

zcv log πv +
n∑

c=1

k1∑
v=1

k2∑
s=1

zcs|v log πs|v

+
n∑

c=1

k1∑
v=1

zcv log φ(y1c1;µv, σ
2
v) +

n∑
c=1

k2∑
s=1

pcs log φ(y1c2; ξs, τ
2
s )

+
n∑

c=1

k1∑
v=1

j∑
y=1

zcvy log η
(1)
y|v +

n∑
c=1

k2∑
s=1

j∑
y=1

pcsy log η
(2)
y|s , (5)

where the functions zcvy and pcsy are equal to one for those individuals belonging to class v and s

“responding” y; that is, zcvy = I{Fc = v, Y2c1 = y} = zcv× I{Y2c1 = y} and pcsy = I{Sc = s, Y2c2 =

y} = pcs × I{Y2c2 = y}.

To maximize `(θ), the EM algorithm alternates two steps until convergence:

1. E-Step: Compute the expected value of the CDLL, given the data and the current value of

the parameters. This boils down to computing the expected values of the indicator functions

described above, that is, the following posterior probabilities:

ẑcv = P (Fc = v|Ỹ c = ỹc),

p̂cs = P (Sc = s|Ỹ c = ỹc),

ẑcs|v = P (Sc = s, Fc = v|Ỹ c = ỹc),

for all c, s and v. This step requires the forward-backward recursions.

2. M-Step: To update θ, maximize the expected value of the CDLL, replacing the probabilities

ẑcv, p̂cs and ẑcs|v in Equation (5) and maximizing it with respect to the model’s parameters.

Note that the expression of the CDLL is made up of six different components, involving

six separate maximizations. In a more general formulation with R manifest variables, the
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maximization depends on the assumed state-dependent distributions, and numerical maxi-

mization is required if no explicit solutions are available. In our case, closed-form solutions

are available in terms of latent and measurement models:

(a) For the initial and transition probabilities, the updates in the parameters are given by:

π̂v =

∑
c ẑcv
n

, (6)

π̂s|v =

∑
c ẑcs|v∑
c ẑcv

, (7)

for v = 1, . . . , k1, s = 1, . . . , k2.

(b) For the state-dependent Gaussian functions, we have:

µ̂v =
1∑
c ẑcv

∑
c

ẑcv y1c1, (8)

ξ̂s =
1∑
c p̂cs

∑
c

p̂cs y2c2, (9)

σ̂2
v =

1∑
c ẑcv

∑
c

ẑcv (y1c1 − µ̂v)
2, (10)

τ̂ 2s =
1∑
c p̂cs

∑
c

p̂cs (y1c2 − ξ̂s)2, (11)

for v = 1, . . . , k1, s = 1, . . . , k2.

(c) Finally, the conditional response probabilities are given by:

η̂
(1)
y|v =

∑
c ẑcvy∑
c ẑcv

, (12)

η̂
(2)
y|s =

∑
c p̂csy∑
c p̂cs

, (13)

for v = 1, . . . , k1, s = 1, . . . , k2 and y = 1, . . . , c.

The convergence of the algorithm is checked on the basis of the difference in the log-likelihood

values of two consecutive steps. An important issue concerns the multimodality of the log-likelihood

function. In practice, the convergence to a global maximum is not ensured; thus an appropriate

initialization of the algorithm is required. We discuss our strategy in Section 3.2, with reference to
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the empirical application. Model identifiability is checked based on the numerical approximation

of the observed information matrix.

3 Empirical application

3.1 Data

We use data from the National Longitudinal Survey of Youth 1979 cohort (NLSY79). The NLSY

is a longitudinal survey that follows the lives of a sample of 12,686 young American men and

women who were 14- to 22-year-old when first interviewed in 1979. Respondents were interviewed

annually until 1994, and every other year since 1996. The project provides data available up to

2014 (Round 26), and the questions refer to the years before the interviews. During the first

waves, for respondents living with their parents, a section of the survey (Household Interview)

was addressed directly to the respondents’ parents and includes information on family income at

the parental level. In 1979, respondents were also asked to report parents’ occupations. Given

the long time period spanned by the survey, the NLSY dataset is adopted in several studies on

intergenerational mobility (Jäntti et al. 2006, Bhattacharya & Mazumder 2011, Mazumder 2014).

As standard in intergenerational mobility studies, the unit of observation is constituted by pairs of

individuals linked across generations. Following Bhattacharya & Mazumder (2011), in our analysis

we exclude daughters, to avoid labor force participation issues, and focus on father-son pairs3. The

role of mothers as contributors to the social background is captured by the use of family income

rather than fathers’ earnings. Our final sample, thus, consists of 1,722 men (sons) living with their

parents in 1979.

As a measure of income, we use total net family income, that is, the sum of a number of income

values for household members related to the survey respondent by blood or marriage. A limitation

of the income variable is the top coding of the upper tail of each year’s income distribution4. Given

that the true income levels are not always observed, the standard EM algorithm may deliver unde-

sirable parameter estimates, and it may sometimes fail to converge (Atkinson 1992). Accounting

3In the second generation, the percentage of unemployed women is twice that of unemployed men. In the
supplementary material (Section 2), we provide the results based on the full sample with sons and daughters.

4In particular, from 1979 to 1984, every income level above USD 75,000 was set equal to USD 75,001. However,
starting from 1996, a different algorithm has been implemented. This algorithm takes the top 2% of respondents
with valid entries and averages their value. The averaged value then replaces the income levels of the top 2% of the
distribution.
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for censored observations would require some modifications to the model log-likelihood, and thus,

to the estimation algorithm (Atkinson 1992, Lee & Scott 2012, McLachlan & Jones 1988). However,

we resort to an alternative strategy. In particular, taking time averages as a measure of individual

income reduces the problem, as we use information from several years for each individual. The

advantages of using time averages as proxies of permanent incomes have been extensively discussed

by Solon (1992) and Zimmerman (1992); consequently, it is a common practice in empirical studies

on intergenerational mobility measurement.

Thus, as a measure of parental income, we take the first three waves of the survey, 1979-1981,

and we average the total net family income. To measure sons’ incomes, we average the same

variable over five consecutive waves (1998-2006), when respondents were 37 to 45 years old. For

both generations, we use any available year of data, and we include in the sample only pairs in

which sons have at least two valid income records. We convert all the income variables into constant

2000 U.S. dollars using the Organisation for Economic Co-operation and Development (OECD)

consumer price index.

To have comparable occupational statuses across generations, we map the original variable

labels (Census 1970 occupational codes) into a new variable that splits the occupations into three

broad skill-based categories, and we refer to these categories as high-, medium- and low-skilled

occupations5. We exclude unemployed individuals from the sample.

As stated above, data on parental employment is available only for 1979. We use father’s

occupation whenever reported; otherwise, we drop the father-son pair from the sample. We follow

the same procedure for the respondents’ generation in each of the five consecutive waves from 1998

to 2006. The occupational codes (Census 1970 to 2000 and Census 2000 from 2002 on) refer to

the respondents’ main job in the year before the interview. Regarding the long-term occupational

status, Mazumder & Acosta (2015) point out that it is a more salient issue today than in the past,

in particular due to a higher degree of occupational switching during the life course. We selected

the most recurrent category among the nine ISCO-88 categories. If an individual had the same

5This simplified categorization is obtained from the International Standard Classification of Occupations (ISCO-
88). Low-skilled occupations comprise i) plant and machine operators and ii) assemblers and elementary occupations;
medium-skilled occupations comprise iii) clerks, iv) service workers and shop and market sales workers, v) skilled
agricultural and fishery workers and vi) craft and related trades workers; and high-skilled occupations comprise
vii) legislators, senior officials and managers, professionals and viii) technicians and associate professionals. As
a robustness check, we estimate the model using the nine major ISCO categories. Given the sparseness of these
categories, the information matrix is not invertible due to some estimated probabilities lying at the boundary of the
parameter space. Still, results in terms of mobility remain substantially unchanged.
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number of observations for two different categories, we selected the most recent one. Then, the

ISCO categories were reduced to our skill-based three-group categorization.

Table 1 shows the descriptive statistics arising from the selection procedure. The gap in the

Table 1: Summary statistics (n = 1722)

Average Std. Dev.

Adult sons’ income (1998-2006) 64,065 50,897

Fathers’ income (1978-1980) 50,439 29,881

Sons’ age in 2002 39.8 2.1

Fathers’ age in 1979 46.4 7.2

Ethnic Group (%)

Hispanic (H) 17.6

Black (B) 22.2

Non H, Non B 60.2

Occupation (%) Fathers Adult sons

Low-skilled 31.8 21.9

Medium-skilled 42.6 38.8

High-skilled 25.6 39.3

Notes: The top panel of the table reports the income means and
standard deviations of adult sons and fathers, as well as their age, in
the final sample. The bottom panel reports the distribution of the
occupational variable in the two generations.

average family income in the two generations is due to the structural growth of the U.S. economy

in the period of analysis as well as to the role of the two different top-coding algorithms adopted

in the two time periods. The lower average age of sons, usually identified as the cause of life-cycle

bias in the estimates of intergenerational elasticities, is in line with the previous studies of mobility

using NLSY79 data. Moreover, the almost 40-years-old average sample of sons fulfills the age

requirements to reduce the bias at the minimum, given that the seminal work by Haider & Solon

(2006) sets this optimal age between 35 and 45 years old for the United States. The evolution of

the occupational distributions in the two generations reflects changes that occurred in the labor

market structure in the years between the 1980s and the 2000s with the increase in high-skilled
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jobs to the detriment of low-skilled jobs.

3.2 Model fitting

We now present the main results of the empirical application of the model described in Section 2.

We first discuss the selection of the number of latent classes. Then, we show in detail the latent

class composition in terms of income and occupation. Finally, we display the estimated transition

matrix that captures the degree of intergenerational mobility.

To select the number of latent states, we run the model for each possible combination of (k1, k2),

with k1 = {2, 3, 4} and k2 = {2, 3, 4, 5}. A suitable number of latent states is k1 = 3 and k2 = 4,

according to the Bayesian’s information criterion (BIC), as shown in Table 2.

Table 2: Model selection

k1/k2 2 3 4 5

40625.48 40279.23 40251.52 40261.20

2 [-20241.95] [-20046.47] [-20010.27] [-19992.75]

(19) (25) (31) (37)

40540.31 40149.96 40118.04 40135.52

3 [-20177.01] [-19955.76] [-19913.72] [-19896.38]

(25) (32) (39) (46)

40544.04 40151.66 40124.48 40150.90

4 [-20156.53] [-19930.53] [-19887.14] [-19870.54]

(31) (39) (47) (55)

Notes: The table reports, for each combination of (k1, k2), the num-
ber of free parameters of the model (brackets), the maximum of the
log-likelihood function (square brackets) and the value of the Bayesian
information criterion.

Due to the usual problem of possible multimodality of the likelihood function, we estimate the

model 15 times by randomly selecting the starting values of the algorithm. We are quite confident

that the solution, occurring all the 15 times up to negligible differences in the Gaussian densities’

means and variances, is the global maximum of the likelihood function. Standard errors for the

estimates are computed via non-parametric bootstrap.
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Table 3: Class sizes and Gaussian densities’ parameter estimates

Panel A: Fathers

v 1 2 3 -

πv 0.411 0.462 0.126

µv 28.943 56.767 97.234

σv 13.793 18.138 37.399

Panel B: Adult sons

s 1 2 3 4

δs 0.325 0.419 0.208 0.047

ξs 28.113 57.851 96.340 223.637

τs 12.641 17.603 31.536 83.381

Notes: The table shows the estimated class
size, the mean (shown in US dollar/1000) and
the standard deviation of the Gaussian density
of each component, for fathers’ (Panel A) and
adult sons’ (Panel B).

Table 3 reports the estimated class sizes along with the means and variances of the income

components. Figure 1 plots the kernel density estimates of the income distributions along with

the scaled components’ densities. We recall that LMMs are, in general, globally identified up to

a switching of the latent states. Therefore, we identify the classes based on the ordering of the

Gaussian means at each time period.

We emphasize that the latent states have different interpretations in the two time periods.

In this way, we are able to account for structural changes in the economy, that is, changes in

the income distribution and in the labor market. This is particularly true when the number of

classes varies over generations, as in this case6. In the second generation, the top class seems to be

composed of “super rich” individuals, as the average of the income component is well above the

overall average, and the high variance captures the positive skewness of the observed distribution.

Interestingly, the proposed model formulation allows to analyze separately the two main mo-

6The selection of the model with (k1, k2) = (3, 4) classes may be a consequence of the top-coding rule that impacts
the mean and variance at the top of the fathers’ income distribution. In the supplementary material (Section 1),
we provide the main results of the model with k1 = k2 = 4, entailing a more standard square transition matrix and
providing the same qualitative results, in terms of mobility, of the main analysis.
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Figure 1: State-dependent distributions: Income
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Notes: The figure shows kernel density estimates (black) and the components’ estimated scaled Gaussian densities
of the income variable (shown in US dollar/1000) in both generations. Right tails truncated at USD 125,000. First
class (blue), second class (red), third class (green), and fourth class (yellow).
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bility concepts, that is, structural and exchange mobility. These two definitions, though inherited

from sociology, are frequently adopted in the economic literature (Markandya 1982, Schluter &

Van de Gaer 2011). Structural mobility is captured by the changes in the classes’ expectations of

the manifest variables, and by the change in the number of classes over generations. Therefore, the

transition matrix summarizes exchange mobility entailing the reranking mechanism at work from

one generation to another.

In Figure 2, we plot the estimated probabilities of belonging to each occupational category (on

the horizontal axis) given the latent state, for each generation. The bottom class is associated with

a high probability of being employed in an low-skilled occupation. In contrast, the top class is

associated with a high probability of being employed in a high-skilled occupation. In the second

generation, the third and fourth classes’ behavior in terms of occupation is similar, as both classes

are mainly composed of high-skilled employees. As noted, the fourth class in the second generation,

which is characterized by higher family income, emerges as an “extension” of the third class.

The estimated transition matrix is summarized in Table 4. As stated in Section 1, there are

Table 4: Estimated transition matrix (Π̂3×4)

Adult sons

Fathers First Second Third Fourth

First 0.653 0.240 0.094 0.013

(0.122) (0.104) (0.030) (0.014)

Second 0.112 0.605 0.260 0.023

(0.064) (0.115) (0.143) (0.019)

Third 0.036 0.324 0.391 0.250

(0.031) (0.136) (0.130) (0.093)

Notes: The table shows the matrix collecting the esti-
mated transition probabilities. Standard errors (in paren-
theses) are computed via non-parametric bootstrap with
100 replications.

several ways through which it is possible to summarize the information arising from the transition
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Figure 2: State-dependent distributions: Occupation
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medium-skilled, 3: low-skilled), conditional on the latent state, for both generations. Latent states are ordered by
row.
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matrix, Π. Initially, we focus on absolute mobility measures7. We look at upward mobility as the

percentage of sons born to fathers in the lowest class who reach the top class, a measure that is of

great normative interest for equality of opportunity reasons. This value corresponds to the value

at the top-right corner of the transition matrix, and in our case, it is a probability of 0.013 (i.e., 1.3

percentage points). On the other hand, the level of downward mobility is the percentage of sons

born to fathers in the top class who end up in the bottom one. This value corresponds to the value

at the lower-left corner of the transition matrix. In our case the value is a probability of 0.036 (i.e.,

3.6 percentage points). These results provide evidence of a low degree of mobility, when looking at

a latent status composed of the income and occupation dimensions. According to the estimates,

those who have fathers in the first class are unlikely to reach the higher classes. The opposite

happens for those whose fathers are in the top class. The degree of persistence at the top and at

the bottom (i.e. the probability, for those who have fathers in the first and bottom class, to remain

in the same class), is an additional significant information provided by the transition matrix. In

our application, the persistence at the bottom is considerably higher than the persistence at the

top, showing that it may emerge a serious issue with class poverty traps8.

3.3 Race and ethnicity: mobility comparison

An advantage of the model described in Section 2 is that it allows in a simple way to encompass the

role of other determinants in the formation of the latent transition matrix. In the United States,

one of the main covariates that must be taken into account is given by the respondents’ ethnicity

and race.

The ethnic and racial differences in the income distribution in the U.S. have well-known foun-

dations that originate in the last centuries; these inequalities may seriously hamper the process of

development if they are persistent over generations, which is why estimates of intergenerational

mobility by ethnic group or race can provide insights into whether racial differences in the United

States are likely to be eliminated, and, if so, how long it might take.

7As Chetty et al. (2014) argue, there is a broad distinction between relative and absolute mobility measures
based on the different questions to which they apply. Relative mobility measures identify the outcomes of adult
children from low-income families relative to those of adult children from high-income families. Absolute mobility
measures identify the outcomes of adult children from families of a given level in absolute terms. For instance one
may be interested in measuring the outcomes of adult children who grew up in low-income families.

8This result may be induced by the different class structures in the two generations. However, as shown in the
supplementary material (Section 1), the persistence at the bottom is higher than the persistence at the top also
when looking to the (4× 4) transition matrix.
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Other studies have analyzed the role that racial or ethnic origins play in terms of intergener-

ational mobility; see for example Mazumder (2014) and Bhattacharya & Mazumder (2011) who

use the same dataset, resorting to different methodologies9. The authors conclude that in recent

decades black individuals have experienced substantially less upward intergenerational mobility

and substantially more downward intergenerational mobility than white individuals.

In our case, we focus on the distinction between two groups into which the sample is divided,

African American and Hispanic individuals (who account for about the 46% of the sample;see Table

1) and the rest of the sample who identify as white individuals. In the following, we refer to the

two groups as white and non-white individuals. The choice to consider the two minority groups

together is driven by estimation issues related to the restricted sample size.

The empirical model allows to study class composition and transition paths for the two groups.

The class definition procedure does not change with respect to the previous section. All the classes

are defined over the same parameter estimates.

We retrieve the initial and transition probabilities as defined by (6) and (7) conditional on the

group of the sons (Gc), that is:

π̂g
v = P̂ (Fc = v|Gc = g) =

∑
c ẑcv × I{Gc = g}

n
, (14)

π̂g
s|v = P̂ (Sc = s|Fc = v,Gc = g) =

∑
c ẑcs|v × I{Gc = g}∑
c ẑcv × I{Gc = g}

, (15)

for v = 1 . . . k1, s = 1 . . . k2 and g = white, non − white. Thus, now πg
v may be interpreted as the

probability of belonging to class v for a father whose son belongs to group g. Similarly, πg
s|v is now

the probability that a son from group g belongs to class s conditional on his father’s class being v.

Finally, we have the marginal probabilities:

δ̂gs = P̂ (Sc = s|Gc = g) =
∑
v

π̂g
s|vπ̂

g
v , (16)

for s = 1 . . . k2 and g = white, non− white.

A substantial difference exists in terms of the class compositions and transition patterns. In

particular, most of the white individuals belong to the upper classes, whereas the non-white indi-

9They adopt transition probabilities of relative income status and measures of directional rank mobility.
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viduals belong, on average, to the bottom classes, as shown in Table 5. Tables 6 and 7 show the

Table 5: Average posterior probabilities

Panel A: Fathers

v 1 2 3 -

White 0.276 0.552 0.172

Non-white 0.616 0.326 0.057

Panel B: Adult sons

s 1 2 3 4

White 0.221 0.47 0.247 0.062

Non-white 0.482 0.343 0.149 0.026

Notes: The table shows the average posterior probability
of belonging to each latent class, conditional on race or
ethnicity.

transition probabilities for the two groups. The upward mobility of white individuals is almost

twice the upward mobility of non-white individuals, although this figure is very low. In contrast,

downward mobility rate of non-white individuals is more than twice that of white individuals.

These results are in line with previous empirical studies, and provide evidence of the presence of

an ethnic gap in terms of upward and downward mobility. The degree of persistence in the top

classes, which corresponds to the transition from the third to the fourth class, is instead similar:

For white individuals, the degree equals 0.252, and for non-white individuals it equals 0.239.

However, the overall transition patterns as described by the two matrices do not seem very

different. To provide formal evidence of this, we introduce a set of summary measures of mobility,

and then we test the differences in these measures computed for the two groups.

The overall mobility described in transition matrices may be summarized by indices that are

built up aggregating the movement among classes occurring in each father-son couple. More

specifically, a mobility measure is a function M(Π) that maps Π into a scalar (see, e.g., Formby

et al. 2004). Several mobility indices are available to researchers (Checchi & Dardanoni 2002, Fields

& Ok 1996). In our framework, the rectangular matrix constitutes a peculiarity, because perfect

immobility cannot be characterized by an identity matrix. This implies that not all the standard
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Table 6: Estimated transition matrix for white individuals

White adult sons

Fathers First Second Third Fourth

First 0.595 0.281 0.106 0.018

(0.131) (0.111) (0.035) (0.017)

Second 0.094 0.609 0.273 0.024

(0.055) (0.121) (0.146) (0.020)

Third 0.029 0.326 0.393 0.252

(0.026) (0.139) (0.133) (0.090)

Notes: The table shows the matrix collecting the es-
timated transition probabilities for white individuals.
Standard errors (in parentheses) are computed via non-
parametric bootstrap with 100 replications.

Table 7: Estimated transition matrix for non-white individuals

Non-white adult sons

Fathers First Second Third Fourth

First 0.693 0.213 0.085 0.009

(0.116) (0.099) (0.029) (0.012)

Second 0.157 0.595 0.229 0.020

(0.083) (0.103) (0.134) (0.019)

Third 0.068 0.312 0.381 0.239

(0.056) (0.129) (0.131) (0.117)

Notes: The table shows the matrix collecting the esti-
mated transition probabilities for non white individuals.
Standard errors (in parentheses) are computed via non-
parametric bootstrap with 100 replications.
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mobility indices may be applied. We use the index developed by Anderson (2018), defined as:

A = 1−
∑k2

s=1(max(πs|·)−min(πs|·))

k1
,

where max(πs|·) and min(πs|·) are the operator returning the maximum and minimum values,

respectively, of the sth column of Π. The A index satisfies the normalization, immobility and

perfect mobility axioms proposed by Shorrocks (1978).

We further adopt two modified versions of the Bartholomew index (Bartholomew 1982), B1 and

B2. The idea behind the original index is that each class transition is weighted by the number of

crossed boundaries. Our two modified versions are distinguished depending on the weights attached

to each transition, given that in the context of different numbers of classes over generations the

interpretation of the class transition is not straightforward. In B1, the weights are given by the

number of crossed boundaries. In B2, the weights wsv are set equal to 1 for transitions to subsequent

classes, equal to 2 for transitions to classes 1-step more distant than the subsequent classes, and

so on. The indices are defined as follows:

B1 =
1

k2 − 1

k1∑
v=1

k2∑
s=1

πvπs|v|s− v|,

B2 =
1

k2 − 1

k1∑
v=1

k2∑
s=1

πvπs|vwsv.

Similar to the standard Bartholomew index, these modified versions satisfy the normalization and

the immobility axioms, but not the perfect mobility axiom. Moreover they will not be comparable

across studies based on transition matrices of different orders. Nonetheless, their interpretation is

straightforward. They are bounded between 0 and 1, and the higher their values, the greater the

level of mobility in the transition matrix.

In Table 8, the mobility indices extracted from the transition matrix Πk1×k2 and computed

on the whole sample are compared with those extracted from the transition matrices of the two

sample subgroups. The point estimates suggest that the overall degree of mobility is higher for

non-white individuals, and this is true for all the considered indices. However, this differences are

not statistically different from zero.

In contrast, when testing the significance of the difference in terms of the initial probabilities
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Table 8: Mobility comparison among racial or ethnic groups

Whole sample White Non-white Group diff

A 0.474 0.492 0.476 0.198

(0.055) (0.053) (0.061)

B1 0.155 0.163 0.144 0.352

(0.038) (0.041) (0.035)

B2 0.387 0.390 0.382 0.395

(0.013) (0.012) (0.016)

Notes: The table shows the Anderson (A) and modified
Bartholomew (B1, B2) indices computed on the model’s esti-
mated transition matrices for the whole sample and the two
racial or ethnic groups (Πg

k1×k2
, for g = white, non − white and

(k1, k2) = (3, 4)). The last column (Group diff) reports the test
statistics of a two-tailed test for the equality of the indices com-
puted in the two groups. Standard errors (in parentheses) are
computed via non-parametric bootstrap with 100 replications.

among the two groups, we reject the null hypothesis of the difference being zero in all cases. This

results provide evidence of the existence of a racial or ethnic gap in terms of class composition,

rather than transition patterns.

4 Conclusions

This paper aims at proposing a new approach based on a multivariate framework to the study of

intergenerational mobility. The model adopted may be cast in the class of latent Markov models,

where an individual status is treated as a discrete latent variable with a finite number of states.

Individuals are aggregated in different classes and a latent transition matrix between the two

generations’ classes is estimated. The peculiarity of this model is that it allows to analyze a

multidimensional status and to avoid the issue of fixing class boundaries. Individual assignment is

based on the posterior probabilities of belonging to each class. Another key feature of the model

is that it allows the number of classes to differ in the two time periods, potentially delivering a

rectangular transition matrix.

The results from the empirical application based on the National Longitudinal Survey Data

from the U.S. show that the level of upward and downward mobility of the latent transition matrix

23



is low, thus implying a strong class persistence at the extremes of the distribution. We further

look to the more comprehensive mobility indices that encompass all the movements between the

selected number of classes. If we disentangle the classes’ composition and the transition patterns

based on the racial or ethnic origin of the sons, we find that overall mobility is not statistically

different among the two groups, although a key discrepancy is found in terms of class belonging,

in particular for the fathers’ generation.

Given the characteristics of the model, future work might aim to study intragenerational mo-

bility and the transition between social classes over the individual life-cycle, or to conduct a cross-

country comparative analysis to verify the differences in terms of class composition in different

countries.
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