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Abstract

Several variables of interest in social sciences are bounded. Hence many of them are represented in terms of
either attainments or shortfalls. We jointly address two problems for inequality measurement posed by these
potentially arbitrary choices. Firstly, inequality comparisons may not be robust when switching from attain-
ment to shortfall representations. This is known as the consistency problem and the literature has provided
several solutions for it. Secondly, maximum inequality with bounded variables is a predictable function of
mean attainment (e.g. parabolic in the case of some well-known absolute inequality measures) characterised
by low maximum levels when the mean approaches the bounds. This is known as the boundary problem and
it compromises inequality comparisons of distributions with different means. In order to address these two
concerns jointly, we propose a new inequality measurement framework for bounded variables, comprising a
new class of normalised inequality indices that capture the extent to which maximum inequality is realised.
The new inequality measurement framework is both consistent and immune to the boundary problem. We
illustrate the efficacy of our approach through an example analysing cross-country international inequality
in some well-known education and health indicators. Our approach show how the understanding of inequal-
ity using our proposed approach may produce a starkly different picture from the same using traditional
inequality measurement frameworks.
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1 Introduction

In his seminal contribution, Atkinson (1970) set the foundations of inequality measurement as we
know it. After five decades, the contributions to this burgeoning field of research have expanded
in multiple directions, and ‘inequality’ can arguably be considered one of the most hotly debated
topics in an increasingly globalised world, as witnessed by the popularity of several recent books
on the subject (e.g. Piketty, 2015; Bourguignon, 2017; Atkinson, 2018; Milanovic, 2018). More-
over, the interest in inequality has gone well beyond the study of monetary distributions. Nowa-
days scholars and policy-makers alike are particularly interested in studying the distribution of the
non-pecuniary dimensions of well-being (e.g. health and education outcomes, or the post-2015
Sustainable Development Goals [SDG] agenda).

Bounded variables abound. Unlike monetary variables such as income or consumption expendi-
ture, the majority of non-pecuniary aspects of wellbeing are gauged by variables that cannot take
indefinitely large values like literacy rates or infant mortality rates. This seemingly unimportant
and technical point has key implications as regards the way in which we measure and interpret
‘inequality’ in the corresponding distributions. The measurement of inequality for bounded vari-
ables poses specific challenges that, while acknowledged in the literature, have not been jointly
addressed in a satisfactory manner thus far. In this paper, we propose an approach to inequality
measurement with bounded variables that addresses two key problems simultaneously.

The first problem that researchers encounter when studying inequality for bounded variables is the
‘consistency problem’. When a variable is bounded it is a priori possible to focus either on the dis-
tribution of achievements or the corresponding distribution of shortfalls with respect to the upper
bound.1 As highlighted by Micklewright and Stewart (1999), Kenny (2004),Clarke et al. (2002),
Erreygers (2009), Lambert and Zheng (2011), Lasso de la Vega and Aristondo (2012),Bosmans
(2016) and many others, many inequality measures (especially popular relative measures like the
Gini coefficient) fail to rank distributions consistently when measurement is switched from at-
tainments to shortfall representations. Far from being a mere academic curiosity, the consistency
problem poses several practical challenges to the study of inequality for bounded variables by
precluding recourse to popular tools like the Lorenz curve. Fortunately, a battery of satisfac-
tory solutions enabling the consistent measurement of inequality with bounded variables has been
proposed, e.g. using absolute inequality measures (Erreygers, 2009; Lambert and Zheng, 2011),
indices based on both representations (Lasso de la Vega and Aristondo, 2012), or using pairs of
weakly consistent indices (Bosmans, 2016).

The second limitation is the ‘boundary’ problem (in some contexts also known as ‘floor-’ and
‘ceiling-effect’ problems). Whenever a variable is bounded, one can observe a clustering of the
distribution as its mean converges towards any of its bounds. In these situations, the correspond-
ing inequality levels mechanically go to zero, simply because there is no room left for further
variation. This problem persists even when the consistency problem is solved using any of the
aforementioned solutions. For instance, in the case of several absolute inequality measures and
the absolute Lorenz curve, as the mean of the distribution increases from the lower bound to the
upper bound of the distribution, the level of maximum feasible inequality first increases and then

1For instance, improvements in the coverage of public health plans could be assessed via the percentage of vaccinated
children (an achievement indicator) or through the percentage of unvaccinated children (a shortfall indicator).
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decreases; making the maximum feasible inequality a parabolic function of the mean. In these
circumstances, it is not clear whether studying inequality with a bounded variable can provide new
insights above and beyond what we already know from studying the values of the mean alone.2

More generally, for any given consistent inequality measure, maximum feasible inequality be-
comes a predictable function of mean attainment making it difficult to disentangle ‘mechanical’
changes from inequality dynamics due to social phenomena when comparing distributions with
different means.

In order to address these issues, we propose a new class of inequality indices, the so-called class
of ‘normalized inequality measures’. This class is obtained by combining a seemingly weak nor-
malization axiom with the strong consistency requirement (Bosmans, 2016) and other minimally
desirable properties (e.g. the transfers principle). As a result, we obtain new inequality measures
quantifying observed inequality levels as a proportion of the maximum inequality levels that could
be attained with the same index evaluated at an hypothetical distribution with the same mean as the
observed distribution. The new measures satisfy the basic requirements of inequality measurement
and are neither affected by the boundary effects nor by the consistency problems.

After defining our normalised inequality measures we illustrate how they perform empirically and
compare them vis-à-vis their absolute and relative counterparts. We study the evolution of interna-
tional inequality across countries in three education indicators from 1950 to 2010 and two health
indicators from 1950 to 2015. Our results show that our newly proposed normalised inequality
indices produce significantly different trend in inequality that the currently existing measures.

The rest of the paper is organised as follows. In section 2, we introduce the basic inequality
measurement framework including notation and basic definitions. In sections 3 and 4 we examine,
respectively, the challenges of consistency and boundary effects when measuring inequality with
bounded variables. Section 5 presents the class of normalised inequality measures that provide
consistent inequality comparisons for bounded variables free of the boundary problem. Section 6
presents the empirical illustration and section 7 concludes.

2 Basic framework for measuring inequality with bounded variables

Let us denote the set of all real numbers, all non-negative rational numbers and all positive natural
numbers by R, Q and N, respectively. The non-negative and strictly positive counterparts of real
numbers are denoted by R+ and R++, respectively. Suppose, there are n units of analysis (which
could be people, households, municipalities or even countries, etc.) such that n ∈ N \ {1}. Let
x = (x1, . . . ,xn) be an attainment distribution of n units (or an n-dimensional achievement vector),
where xi ∈ [0,U ] ⊆ Q represents unit i’s cardinally measurable attainment bounded between a
lower bound of zero and some fixed positive upper bound U .3 We denote the set of all attainment
distributions of size n with upper bound U by Xn ⊆ Qn and the set of all possible attainment
distributions with upper bound U by X = ∪nXn ⊆Q.

2This point was already highlighted by Wagstaff (2005) in his study of the concentration index, and discussed by
many others after him (e.g. Erreygers, 2009; Erreygers and Van Ourti, 2011; Wagstaff, 2009, 2011). In this paper we
extrapolate some of these ideas to the context of inequality measurement for bounded variables.

3Our consideration for non-negative variables covers the vast majority of cases found in real-world applications.
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Let us denote vectors comprising n ones and n zeros by 1n and 0n, respectively. Consequently,
for any λ > 0, λ1n denotes the constant or egalitarian distribution where all n elements are equal
to λ . We denote the arithmetic mean function evaluated at any x ∈X by µ(x). Additionally,
for some n ∈ N and for some U ∈ Q, let Gn = {0,U/n, . . . ,(n− 1)U/n,U} denote a set of n+ 1
equally-spaced grid points between 0 and U . A distribution x ∈Xn is bipolar whenever for some
n′ ∈ N such that n′ < n, n′ units in x attain the value of U and the remaining n−n′ units attain the
value of 0. Likewise, we refer to a distribution x ∈Xn as almost-bipolar whenever n′ units in x
attain the value of U , n−n′−1 units in x attain the value of 0, and the leftover unit attains a value
of ε = [nµ(x)− n′U ] ∈ (0,U). It will be clear afterwards that for a bipilar distribution x ∈Xn,
µ(x) ∈Gn.

An inequality index I : X → R+ is a continuous real-valued function and is expected to satisfy
certain basic properties (Chakravarty, 2009). The first basic property, anonymity, requires that an
inequality index should not depend on an eventual reordering of attainments across units. For-
mally, anonymity requires that I(y) = I(x) for some x,y ∈Xn whenever y = xP, where P is a
permutation matrix.4 The second basic property, transfer principle, requires that a transfer from
a richer to a poorer unit, without altering their relative positions, should decrease inequality (pro-
gressive transfer); whereas, alternatively, a transfer from a poorer to a richer unit should increase
inequality (regressive transfer).5 Formally, for some x,y∈Xn, I(y)< I(x) whenever y is obtained
from x by a progressive transfer and I(y) > I(x) whenever y is obtained from x by a regressive
transfer.6 The third basic property, population principle, requires that identical cloning of all units
should leave inequality unaltered (thereby rendering populations with different sizes comparable).
Formally, I(y) = I(x), whenever y is obtained from x by a replication for some x,y ∈X .7

Finally, we refer to a real valued function f : X → R+ as symmetric whenever f (x) = f (xP) for
some x,y∈Xn, where P is a permutation matrix. We refer to a real valued function f : X →R+ as
strictly S-convex if, for some x,y∈Xn, f (y)< f (x) whenever y is obtained from x by a progressive
transfer and f (y) > f (x) whenever y is obtained from x by a regressive transfer (Marshall and
Olkin, 1979, p. 53-54).

3 The consistency problem

One issue that has received significant attention in the context of the measurement of inequality
for bounded variables is the consistency problem. Variables with both lower and upper bounds
(e.g. rates of mortality, literacy, access to basic facilities, etc.) can be represented by either their

4A permutation matrix is a square matrix with exactly one element in each row and column is equal to 1 and the rest
of the elements are equal to zero.

5Technically, for some x,y ∈Xn, y is obtained from x by a progressive transfer whenever there are two units i, j and
some k > 0 such that yi = xi + k ≤ x j− k = y j and yl = xl for every l 6= i, j. Alternatively, y is obtained from x by a
regressive transfer whenever there are two units i, j and some k > 0 such that yi +k = xi ≤ x j = y j−k and yl = xl for
every l 6= i, j.

6The bounded indicators discussed in this paper are not literally transferable (e.g., we do not suggest ‘uneducating’
highly educated individuals and transferring that education to less educated ones). Yet, one can compare the two
hypothetical scenarios (pre- and post-“transfers”) and still judge the latter exhibiting lower inequality than the former.

7Technically, y ∈ Xm for some m = γn, where γ ∈ N \ {1}, is obtained from x ∈ Xn by a replication, whenever
y = (x, . . . ,x), i.e. γ copies of x are repeated one after the other in y.
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distance from the lower bound (i.e. as attainments) or, alternatively, as their distance from the
upper bound (i.e. as shortfalls). If x ∈Xn denotes the attainment distribution then we define the
shortfall distribution associated with it as xS = (xS

1, . . . ,x
S
n) ∈Xn with xS

i = U − xi representing
unit i’s shortfall with respect to the upper bound U . Since there is no a priori reason to prefer one
representation (attainment or shortfall) over the other, the literature has proposed different versions
of consistency properties that an inequality ordering should satisfy.

The first consistency property, perfect complementarity, requires that the value of the inequality
index remains unaltered when we switch between attainment and shortfall representations of the
same distribution, i.e., I(x) = I(xS) for any x ∈X (Erreygers, 2009). The second consistency
property, strong consistency, requires that inequality measures should rank pairs of attainment
distributions and their shortfall counterparts in a coherent manner. In other words, the inequality
ranking should be robust to alternative representations of the variable., i.e., I(x)≤ I(y)⇔ I(xS)≤
I(yS) for any x,y ∈ X (Lambert and Zheng, 2011). Clearly, perfect complementarity implies
strong consistency, but the reverse is not true. The third consistency property, weak consistency,
proposed by Bosmans (2016), is predicted on the realisation that it is possible to find pairs of
different inequality indices that produce consistent comparisons as long as one index IA is used
for the attainment distribution and another index IS = φ(IA) is used for the shortfall counterpart,
where φ : R+→ R+ is a strictly increasing function. The pair (IA, IS) is jointly weakly consistent
if and only if IA(x)≤ IA(y)⇔ IS(xS)≤ IS(yS) for any x,y ∈X . For example, if IA(x) is the Gini
coefficient evaluated on the attainment distribution x, then IS(xS) = µ(xS)IA(xS)/[U−µ(xS)] may
be a potential candidate for consistently evaluating inequality for the shortfall distribution.

Different consistency properties restrict the set of permissible inequality measures. For instance,
the advocates of strong consistency (Erreygers, 2009; Lambert and Zheng, 2011) suggest using
absolute inequality indices (and related partial orderings). An inequality measure is absolute if
the evaluation of inequality remains unchanged when all attainments are changed by the same
amount, i.e., if it satisfies the translation invariance property, which requires that I(y) = I(x) for
some x,y ∈Xn whenever y = x+λ111n for some λ ∈ R.8 Lasso de la Vega and Aristondo (2012),
however, showed that strong consistency is satisfied by a wider class of inequality indices that stem
from equally weighted generalised means of an inequality index evaluated at the attainment distri-
bution and the same index evaluated at the corresponding shortfall distribution. Finally, Bosmans
(2016) showed that relaxing strong consistency to weak consistency allows permissible measures
to include even relative inequality indices. An inequality index is relative if the evaluation of in-
equality remains unchanged when all attainments are changed by the same proportion, i.e., if it
satisfies the scale invariance property, which requires that I(y) = I(x) for some x,y ∈Xn when-
ever y = λx for some λ > 0. Weak consistency certainly broadens the set of permissible inequality
measures, but strong consistency may appear to be more amenable to practical applications.

8Chakravarty et al. (2015) also identify a family of absolute consistent inequality indices. Seth and Alkire (2017)
adopt an absolute approach to consistently measure inequality among the poor in the counting poverty framework.
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4 The boundary problem

By comparison to the consistency problem, the boundary problem has received little attention.
Generally, the boundary problem stems from the existence of a predictable functional relation be-
tween mean attainment and maximum feasible inequality (for a given inequality index), which
hinders comparisons between distributions of bounded variables with different means. Indeed,
when means differ it can be hard to disentangle the change in inequality due to social phenomena
(arguably the one we are interested in) from that due to the predicable relationship between mean
attainment and maximum feasible inequality. For instance, in the case of many absolute inequality
measures like the absolute Gini and the variance (which are consistent) when mean attainment
converges toward any of the bounds maximum feasible inequality falls which prompts observed
inequality to fall in consequence. In fact, with these absolute inequality measures the relation-
ship between mean attainment and maximum feasible inequality is usually parabolic with a global
maximum at µ(x) = 0.5U (if the lower bound is equal to 0).

Figure 1: Change in the mean and different absolute inequality measures for cross-country
Hepatitis-B immunization rates
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Notes: The formula for the variance is V (x) = (∑n

i=1[xi−µ(x)]2)/n. The formula for the absolute Gini
index is Ga(x)= µ(x)Gr(x) where Gr is the relative Gini index: Gr(x)= (∑n

i=1 ∑
n
j=1 |xi−x j|)/2µ(x)n2.

The LAG index is equal to LAG(x) = ([Gr(x)−1 + Gr(xS)−1]/2)−1. The LAC index is equal to
LAC(x) = ([CV (x)−1 +CV (xS)−1]/2)−1, where CV ≡

√
V/µ is the coefficient of variation.

In order to illustrate the empirical relevance of the boundary problem, figure 1 shows the change in
mean Hepatitis-B immunization rates across countries as well as the changes in various measures
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of cross-country inequality between 1990 and 2012. We use four different consistent inequality
measures: two absolute inequality indices, the Variance V and the absolute Gini coefficient Ga
(relative Gini coefficient times the mean); and two inequality measures from the class of measures
proposed by Lasso de la Vega and Aristondo (2012) (see note in figure 1 for details). As mean
attainment increases from the lower bound to the upper bound, the values of all four inequality
measures first increase and then decrease.

Thus, we observe a Kuznets curve relating mean attainment to each of the four consistent inequality
measures over time. Is this type of relationship merely an empirical regularity or a mechanical
artifact driven by the susceptibility of existing inequality indices (consistent or not) to the boundary
problem?

In order to explore whether there is a predictable relationship between mean attainment and max-
imum possible inequality in the distribution of a bounded variable, first we identify whether such
distribution reflecting maximum inequality for a given mean exists and, if so, what it looks like.
Then we need to check whether inequality indices evaluated at such distributions change in pre-
dictable ways when the mean is different. Proposition 1 shows that a maximum-inequality distri-
bution (MID), x̂ ∈Xn, for a given distribution x ∈Xn with µ(x) = µ(x̂) exists and how it looks
like.

Proposition 1 For any n∈N\{1} and for any x∈Xn, a maximum inequality distribution x̂∈Xn,
such that µ(x) = µ(x̂), exists and is either bipolar or almost-bipolar.

Proof. See Appendix A1.

As it turns out, an MID is either bipolar or almost bipolar. Bipolar distributions consist of frequen-
cies concentrated either at the lower bound or upper bound exclusively; whereas, almost bipolar
distributions consists of all units with either the lower or upper bound value, except for one unit
with interior value ε ∈ (0,U). For example, assume U = 1, n= 4 and so G= {0,0.25,0.5,0.75,1}.
Consider first the distribution x = (0.1,0.4,0.7,0.8) with µ(x) = 0.5 ∈G. In this case, the corre-
sponding MID is x̂ = (0,0,1,1), which is bipolar, and clearly µ(x̂) = µ(x) = 0.5. Now consider a
second distribution y = (0.2,0.4,0.7,0.9) with µ(y) = 0.55 /∈G. The corresponding MID, in this
case, is ŷ = (0,0.2,1,1) with µ(ŷ) = µ(y) = 0.55 and ε = 0.2 ∈ (0,1), but ŷ is almost-bipolar and
no further regressive transfer is possible. Note that an MID is unique for a given mean and for a
given n. In other words, for any two distributions x,y ∈Xn such that x 6= y but µ(x) = µ(y), it is
always x̂ = ŷ.

Even though MIDs are hypothetical distributions unlikely to be observed in practice, they do rep-
resent the benchmark case of maximum inequality against which we can compare bounded dis-
tributions. An inequality evaluation of a distribution cannot be larger than its MID as long as an
inequality index I satisfies anonymity and the transfer principle.

Corollary 1 For any n ∈ N\{1} and for any x ∈Xn, I(x)≤ I(x̂) whenever I satisfies anonymity
and the transfer principle, where x̂ is the MID for x.

7



Figure 2: The relationship between the mean and the maximum inequality of a bounded variable
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LA0 is the geometric mean of the (relative) Gini index evaluated at x and the same index evaluated at
xS, whereas LA2 is the Euclidean mean of those two indices. Thus LA0(x̂) =

√
µ(x̂)[1−µ(x̂)] and

LA2(x̂) =
√

[µ(x̂)2 +(1−µ(x̂))2]/2.

Proof. Given that x̂ is obtained from x by one or more regressive transfers, I(x) < I(x̂) by the
transfer principle. Whenever x = x̂, I(x) = I(x̂) by anonymity.

Figure 2 shows the relationship between mean and inequality for bipolar MIDs using four different
inequality measures that satisfy some form of consistency. We assume that U = 1 and 0< µ(x)< 1
in order to allow the existence of inequality. Moreover, µ(x) ∈ G because the constructed MIDs
are bipolar. We choose the strongly-consistent absolute Gini index (Lambert and Zheng, 2011); the
weakly-consistent relative Gini index (Bosmans, 2016); and two strongly-consistent indices from
the class proposed by Lasso de la Vega and Aristondo (2012): the equally weighted geometric
mean (LA0) and Euclidean mean (LA2), respectively, of the relative Gini indices evaluated at
attainment and corresponding shortfall distributions. As µ(x) increases in figure 2, we move from
one MID to another and the inequality measures react differently to the changes in the MID. For
example, the absolute Gini index and the LA0 index first increase, reach their maximum values
around µ(x) = 0.5 and then decrease. By contrast, the LA2 index first decreases, reaches its
minimum value around µ(x) = 0.5 and then increases. Finally, the relative Gini index decreases
monotonically as the mean increases.

Evidently, inequality comparisons of distributions with different means using existing inequality
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indices suffer from the boundary problem, thereby not being sufficiently meaningful unless we
control for changes in maximum possible inequality as a function of the mean. In order to control
for the effect of differing means, we propose a simple approach. For a given distribution, we sug-
gest comparing the observed inequality level against that in the corresponding MID. Our proposal
involves using a ‘relative-like’ inequality measure that assesses how large an observed inequality
level is with respect to the extent of inequality in the corresponding counterfactual distribution that
serves as a reference point.

5 A family of normalised inequality indices

Our proposal to solve the boundary problem requires measuring observed inequality as a propor-
tion of the maximum attainable with the same mean attainment, i.e. evaluated at the respective
MID. The proposal restores comparability across distributions with different means and (strongly)
consistently across alternative representations. The crucial property imposed to counter the bound-
ary problem is the maximality principle:9

Maximality Principle For any x ∈Xn, I(x) = 1 whenever x = x̂.

As we will show, the maximality principle ensures that inequality is measured as a proportion of
the maximum level reachable given a mean attainment so that any distribution different from the
corresponding MID obtains an inequality value strictly below 1.

We also introduce the standard equality principle, which requires that I(x) = 0 whenever x = λ1n
for any x ∈Xn and λ ≥ 0. This property ensures that inequality is minimal and equal to zero
whenever all units feature exactly the same value for the indicator, i.e. x1 = x2 = · · · = xn. From
now onwards, we refer to the family of inequality indices satisfying the maximality principle and
the equality principle in addition to other desirable properties as normalised inequality indices,
which is characterized in theorem 1.

Theorem 1 For any n ∈ N \ {1} and any x ∈Xn, an inequality index I satisfies anonymity, the
transfer principle, the equality principle, the maximality principle and strong consistency whenever

I(x) =


f (x)− f (x̄)
f (x̂)− f (x̄)

for x 6= x̄

0 for x = x̄
,

where x̄ = µ(x)1n, x̂ is the MID for x, and f : Xn → R++ is a symmetric and strictly S-convex
function with f (xS)− f

(
x̄S)= c[ f (x)− f (x̄)]m for some m,c ∈ R++.

Proof. See Appendix A2.
9MIDs can also be identified with relative inequality measures applied to variables without upper bounds and negative
values. In such cases the MID is characterised by one unit having positive income and everyone else featuring zero
income. The values of relative inequality indices evaluated at these MIDs often depend on the population size. Indeed
that is the case of the relative Gini index which is normalised to attain the value of 1− 1

n when evaluated at a MID.
Otherwise normalised relative inequality indices are not popular even though they can be constructed. For normalised
versions of members of the generalised entropy class see Shorrocks (1980, footnote 7, p. 623).
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Theorem 1 states that an inequality measure that is strongly consistent and normalised between
0 and 1 according to the equality principle and the maximum inequality axiom needs to be a
particular type of weakly consistent inequality index (since f (x)− f (x̄) satisfies all the minimum
properties of an inequality index, namely anonymity, transfers principle and the equality principle,
and f (xS)− f

(
x̄S) = c[ f (x)− f (x̄)]m implies weak consistency though the reverse is not true)

divided by its maximum value which, in turn, depends on the MID associated with any particular
distribution (meaning that µ(x) = µ(x̂)).

Crucially, note that aside from f (xS)− f
(
x̄S)= c[ f (x)− f (x̄)]m no other particular requirement is

imposed on the inequality index in the numerator and denominator (i.e. I) in terms of its sensitivity
to rescaling, translations or other similar transformations defining the different classes of relative,
absolute, intermediate, super-relative or super-absolute measures.10 This means that several mem-
bers of the aforementioned classes are suitable for being in the numerator and denominator of I.
For instance, in the case of absolute indices like the variance, the absolute Gini or the members
of the class proposed by Chakravarty et al. (2015), f (xS)− f

(
x̄S) = c[ f (x)− f (x̄)]m is fulfilled

with C = m = 1 (noting that in all these cases f
(
x̄S)= f (x̄) = 0). The same goes for all members

of the class proposed by Lasso de la Vega and Aristondo (2012) (i.e. C = m = 1). Likewise, both
the (relative) Gini index and the coefficient of variation satisfy the same equality with m = 1 and
C = µ(x)

µ(xS)
. In summary, the class of normalised inequality indices admits myriad functional forms

in the numerator and denominator.

The formulas of the normalised Gini index and the normalized variance appear, respectively, in
expressions 1 and 2:

G∗U(x) =


Ga(x)U

µ(x)(U−µ(x))
if x 6= x̄

0 if x = x̄
, (1)

V ∗U(x) =


V (x)

µ(x)(U−µ(x))
if x 6= x̄

0 if x = x̄
. (2)

6 Empirical illustration: Evolution of cross-country inequality in education and health

In this section, we present some empirical illustrations to reflect the efficacy of our proposal, by
studying the evolution of cross-country inequality in three education indicators and two health
indicators since 1950. To examine the evolution of inequality in education, we look at the share
of total adult population with at least some primary education, the share of total adult population
with at least some secondary education and the share of total adult population with at least some
tertiary education. To examine inequality in health, we select the under five survival rate and the
infant survival rate, where survival rates are the complements of the respective mortality rates.
The education data were obtained from the Barro-Lee dataset; whereas, the data on mortality rates

10See Bosmans (2016) for a concise and comprehensive typology.
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were obtained from the United Nations’ Department of Economic and Social Welfare website.11

The three education indicators reflect rates and so they are bounded between zero and one. For
the health indicators, we obtain the survival rates by subtracting the mortality rates from 1,000 and
then normalising the shortfall by 1,000. Therefore, the survival rates also lie between zero and one.

Figure 3: Changes in the means of selected education indicators and health indicators since 1950

Panel A: Education completion rate Panel B: Survival rate
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Source: Authors’ own computations from the datasets used.
Notes: We have used the data for 133 countries for the three education indicators and the data for 201 countries for
the two health indicators.

In Figure 3, we present the change in mean attainments for the education indicators between 1950
and 2010 and for the health indicators between 1950 and 2015, for every five year period.12 Global
average of all five indicators of education and health show steady improvements since 1950. How-
ever, the means lie at different intervals for different indicators. Between 1950 and 2010, the mean
for the primary education completion rate indicator increases from 0.53 to 0.92, the mean for the
secondary education completion rate indicator increases from 0.12 to 0.76, and the tertiary edu-
cation completion rate indicator increases from 0.02 to 0.25. Note that the mean of the primary
education completion rate indicator lies above 0.50 throughout and that of the tertiary education
completion rate indicator lies below 0.50 throughout, but the same for the secondary education
completion rate indicator lies below 0.50 before 1990 and then it surpasses 0.50. For the two
health indicators, however, the mean of the under-5 survival rate indicator increases from 0.80 in
1950 to 0.97 in 2015 and the mean of the infant survival rate indicator increases from 0.87 in 1950
to 0.98 in 2015. Note that the means of both health indicators lie well above 0.50 throughout.

In Figure 4, we present absolute Gini indices for all five indicators and their relationships to the
respective mean attainments over time. Panels A1 and A2 in the figure present the trends in ab-
solute Gini since 1950. Interesting trends emerge when we look at different indicators. Absolute
inequality across countries for the primary education completion rate indicator falls throughout,
which is compatible to the fact that the mean attainment in the indicator has been more than 0.5
11Source of the education data: http://www.barrolee.com/. Source of health data: https://population.un.
org/wpp/Download/Standard/Mortality/.

12The mean attainment does not include population weights. Each country, irrespective of its size, is considered as an
unit with equal importance.

11
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Figure 4: Change in cross-country absolute Gini indices for education and health indicators since
1950

Panel A1 Panel A2
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Panel B1 Panel B2
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Source: Authors’ own computations from the datasets used.
Notes: We have used the data for 133 countries for the three education indicators and the data for 201 countries
for the two health indicators. The absolute Gini index is Ga(x) = µ(x)Gr(x) where Gr is the relative Gini index:
Gr(x) = (∑n

i=1 ∑
n
j=1 |xi− x j|)/2µ(x)n2.

since 1950. Similarly, absolute inequality across countries for the tertiary education completion
rate indicator rises throughout and is compatible to the fact that the mean attainment in the indi-
cator has been always less than 0.5 since 1950. Interesting pattern is observed for the secondary
education completion rate indicator, where inequality rises and then falls after around 1990, which
is also compatible with the fact that the mean of the indicator surpasses 0.50 around that year. The
trends for absolute Gini indices (Panel A2) for the two health indicators are the same as that of the
primary education completion rate indicator as the means lie above 0.50 for the entire period. The
relationships between mean attainments and absolute Gini indices are presented in the Panels B1
and B2, where each horizontal axis represent the mean attainment and the vertical axis represents
the absolute Gini index. The relationship between the mean and absolute Gini index appears to be
quite mechanical for our illustration.

In Figure 5, we present the evolution of relative inequality with the relative Gini index. Unlike
the absolute Gini indices in Figure 4, the patterns for relative Gini indices are uniform across
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Figure 5: Change in cross-country relative Gini indices for education and health indicators since
1950
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Source: Authors’ own computations from the datasets used.
Notes: We have used the data for 133 countries for the three education indicators and the data for 201 countries for
the two health indicators. The relative Gini index is formulated as Gr(x) = (∑n

i=1 ∑
n
j=1 |xi− x j|)/2µ(x)n2.

all education and health indicators. As mean attainments increase steadily for all five indicators,
relative Gini indices appear to fall throughout, which is evident from Panels A1 and A2 of the
figure. The relationships between the mean attainments and relative Gini indices are depicted in
Panels B1 and B2 of the figure. Both absolute and relative Gini indices follow the pattern that we
discussed in Section 4.

Finally, in Figure 6, we present the trends in normalised Gini indices, where we normalise the
absolute Gini index by the maximum attainable Gini index for a given level of mean attainment
for a bounded variable. Again, we observe, in Panels A1 and A2 of Figure 6, that different trends
emerge. Let us start with the primary education completion rate indicator. Unlike both absolute
and relative Gini indices, the normalised Gini indices register an upward trend. Therefore, after we
control for the boundary problem, cross-country inequality for the primary education completion
rate indicator does not appear to have gone down, as reflected by both absolute and relative Gini
indices. The normalised Gini indices for the secondary education completion rate indicator follow
the same trend between 1950 and 2010, but the normalised Gini indices for the tertiary education
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Figure 6: Change in cross-country normalised Gini indices for education and health indicators
since 1950
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Source: Authors’ own computations from the datasets used.
Notes: We have used the data for 133 countries for the three education indicators and the data for 201 countries for
the two health indicators. The normalised Gini index is G∗U (x) = Ga(x)/[µ(x)(1−µ(x))] where Ga is the absolute
Gini index.

completion rate indicator linger between 0.51 and 0.54 for the entire period. Both health indicators
follow the trend for the primary education completion rate indicator for both absolute Gini indices
and relative Gini indices, but they do not follow the same trend for the normalised Gini indices
for the entire period. The normalised Gini indices for the under-5 survival rate indicator increase
until year 2000 and then fall. Similarly, the normalised Gini indices for the infant survival rate
indicator also increase until year 2000, but then they stabilise. Therefore, what we observe from
our analysis based on the illustration is that normalised Gini indices may produce very different
trends for inequality in practice than traditional absolute and relative indices.

7 Summary and concluding remarks

The use of traditional income inequality measures to study the variability of bounded variables
poses several problems. On the one hand, the bounded nature of the variables generate a pre-
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dictable functional relationship between the mean of a distribution and its maximum inequality
levels (e.g. in the case of many indices, chiefly absolute ones, when the mean approaches either
the upper or the lower bound, inequality mechanically goes to zero). On the other hand, several
measures of inequality, e.g. all the relative ones, fail to rank distribution pairs consistently be-
tween the alternatives of attainments and shortfall representations. We proposed a new approach
to inequality measurement aimed at solving both problems, consistency and boundary effects, si-
multaneously. Basically, the normalised inequality measures compare observed inequality levels
against the maximum inequality level achievable with the same measure across all hypothetical
distributions having the same mean. The normalised inequality indices are strongly consistent
(Bosmans, 2016) and eliminate any mechanical relationship between mean attainment and maxi-
mum inequality brought about by the boundary problem.

To illustrate our approach we have investigated the evolution of international inequality in educa-
tion and health (i.e. between-country inequality in life expectancy) from 1950 to the recent periods
using the normalised inequality measures.

While our proposed inequality measurement framework successfully addresses the consistency
problem and the boundary effect, there remain other measurement challenges in the setting of
bounded variables For example, Lasso de la Vega and Aristondo (2012) provide conditions whose
fulfillment guarantees robustness of inequality comparisons to changes in the upper bound. While
admittedly this problem is not that serious when bounds are neither arbitrary nor expected to
change across time and space (e.g. in the case of indicators expressed as percentage ratios), it
is nonetheless worth exploring how our proposed inequality measurement framework could also
accommodate this potential concern. This challenge is left for future research. Likewise, future
research could explore partial orderings respecting the consistency and normalisation properties
that were combined to generate the normalised inequality indices.
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Appendices

Appendix A1 Proof of Proposition 1

Let us start with an x ∈Xn for some n ∈ N\{1} such that x 6= x̂. Given that a regressive transfer
increases inequality, we may always perform one or more regressive transfers until exhaustion to
obtain the maximum inequality distribution x̂ ∈Xn. Since a regressive transfer does not alter the
mean of a distribution, clearly, µ(x) = µ(x̂). Thus, an MID for any x ∈Xn always exists.

Note now that each element within x is bounded between 0 and U by definition and so it is not
possible to perform further regressive transfers once the bounds are reached.13 Now, there can be
two types of cases: (i) µ(x) ∈G and (ii) µ(x) /∈G, where Gn = {0,U/n, . . . ,(n−1)U/n,U} is the
set of n+1 equally-spaced grid points between 0 and U .

Case (i): Whenever µ(x) ∈ G, then there exists a non-negative integer n′ ≤ n such that µ(x) =
n′U/n. Clearly, µ(x) = n1×U +(n− n1)× 0. Starting with x, it is possible to have a series of
regressive transfers until a distribution with n1 elements equalling U and n−n1 elements equalling
zero is reached. In this case, the maximum inequality distribution x̂ is bipolar.

Case (ii): Whenever µ(x) /∈ G, then there exist a non-negative integer n′ ≤ n such that n′U/n <
µ(x)< (n′+1)U/n. In this case, a series of regressive transfers are possible until n1 elements are
equal to U and n−n1−1 elements are equal to zero. Note that it is not possible for n1+1 elements
to be equal to U because µ(x) < (n′+ 1)U/n. However, when n1 elements are equal to U , then
µ(x) > n′U/n and let us denote the excess amount by ε = nµ(x)− n′U . It is straightforward to
verify that ε ∈ (0,U). In this case, thus, x̂ is almost-bipolar, completing our proof.

Appendix A2 Proof of theorem 1

Consider some x ∈Xn for some n ∈ N\{1} and the corresponding MID x̂. We already know that

I(x) =


f (x)− f (x̄)
f (x̂)− f (x̄)

for x 6= x̄

0 for x = x̄
, (A1)

where x̄ = µ(x)1n and f : Xn→ R++ is a symmetric and strictly S-convex function with f (xS)−
f
(
x̄S) = c[ f (x)− f (x̄)]m for some m,c ∈ R++. It straightforwardly follows from its formulation

in Equation A1 that I satisfies the equality principle as I(x̄) = 0 and the maximality principle as
I(x̂) = 1 since f (x̂)− f (x̄)> 0. We now show that I satisfies the rest of the properties.

First, suppose that y∈Xn is obtained from x such that y= xP, where P is a permutation matrix. By
definition, µ(x)= µ(y) and so ŷ= x̂ and f (ŷ)= f (x̂). Given that f is symmetric, then f (y)= f (x).
Hence, I(y) = I(x) and I satisfies anonymity.

Second, suppose y′ ∈Xn is obtained from x by a regressive transfer. Also, by definition, µ(x) =
13The proof proceeds in similar line of argument as the proof of Theorem 1 in Seth and McGillivray (2018).
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µ(y′) and so ŷ′ = x̂ and ȳ′ = x̄. Hence f (ŷ′) = f (x̂) and f (ȳ′) = f (x̄). Given that f is strictly
S-convex, then f (y′)> f (x). Hence, I(y′)> I(x) and I satisfies the transfer principle.

Finally, we show that I satisfies strong consistency by showing that I(x) ≤ I(y)⇔ I(xS) ≤ I(yS)
for any x,y ∈Xn. Let I(xS)≤ I(yS) and so, by Equation A1,

f (xS)− f (x̄S)

f (x̂S)− f (x̄S)
≤ f (yS)− f (ȳS)

f (ŷS)− f (ȳS)
. (A2)

Then, plugging f (xS)− f (x̄S) = c[ f (x)− f (x̄)]m in Equation A2, we obtain:

c[ f (x)− f (x̄)]m

c[ f (x̂)− f (x̄)]m
≤ c[ f (y)− f (ȳ)]m

c[ f (ŷ)− f (ȳ)]m
⇔ f (x)− f (x̄)

f (x̂)− f (x̄)
≤ f (y)− f (ȳ)

f (ŷ)− f (ȳ)
.

Hence, I(x) ≤ I(y). Following the same procedure it is easy to prove that the reverse direction of
causality is also true, i.e. I(x) ≤ I(y) implies I(xS) ≤ I(yS). Hence I satisfies strong consistency.
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