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Measuring inequality of opportunity using sampling-based

Shapley decomposition: Application to Australian data

2001-2017 ∗

Dongjie Wu, Prasada Rao, Pravin Trivedi, Kam Ki Tang and Nicholas Rohde

In this paper, we propose an alternative approach to measure inequality of opportunity

(IOP) using data from Australia between 2001 and 2017. We propose a sampling-based

Shapley decomposition approach to measure the overall contribution of all observed cir-

cumstances to income inequality, and the contribution of each circumstance variable. This

approach allows us to reduce the bias due to the sparse divisions associated with a large

set of circumstances, to massively improve computational efficiency, and to provide both

lower and upper bound estimates of IOP. Using this method, we find that inequality of

opportunity in Australia ranges from around 5% to 20% on average during 2001 and 2017.

1 Introduction

Socio-economic inequality has been drawing public attention in recent years. The rising top

one percent income share (Alvaredo et al., 2013) and the widening inequality during the COVID-

19 pandemic (Patel et al., 2020) raise the question of the fairness of recent rising inequality.

Inequalities due to differences in work ethics may be acceptable as they reflect the heterogeneity

in work/leisure trade-off preferences among the population. Conversely, inequalities due to

discrimination, or exogenously imposed barriers to success are much more likely to be unjust

and socially harmful (Niehues and Peichl, 2011), as well as detrimental for economic growth

(Marrero and Rodŕıguez, 2013). As such, policymakers are often advised to target these types

of disparities (Ferreira, 2019).

Unravelling fair and unfair inequalities is conceptually challenging. However, the rapidly de-

veloping Inequality of Opportunity (IOP) literature offers a coherent framework to achieve that.

∗Corresponding author: Dongjie Wu, Department of Sociology, University of Copenhagen, Copenhagen, Den-
mark. Email: dongjie.wu@soc.ku.dk
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Developed principally by Roemer (1998), Arneson (1989), Cohen (1989) and Sen (1990), this

literature seeks to decompose variations of outcomes like income into contributions from circum-

stances (factors that lie beyond individual control such as race, gender and family background)

and efforts (variables that individuals are judged to be responsible for, such as their work ethic).

The applied work in this area usually focus on the fraction of total inequality attributable to

circumstances (see Ferreira and Gignoux, 2011 and Checchi and Peragine, 2010).

However, there are two main empirical challenges on measuring IOP. Firstly, with current

empirical work methods, the IOP estimate is biased if the set of circumstances is large, and more

so if circumstance variables are continuous variables. A general practice of measuring IOP is to

divide samples into a limited number of types – each type representing a group of individuals

sharing the same circumstances. With finite observations, an excessively fine division will result

in few samples for each type and a biased estimate. Secondly, the current practice can only

identify the effect of all variables on income variation but not the individual contributions

of the variables and their relative importance. For instances, it has emerged that paternal

education and socioeconomic status are especially important in transmitting inequalities over

generations (see Corak, 2013 and Andersen, 2019). Knowing the precise contributions of each

of the variables in concern to IOP may offer some clues about how best to combat inherited

economic disadvantages (Tomes, 1981).

In this paper, we develop some computational techniques for measuring IOP, and apply them

to Australian panel data from 2001-2017. Our method is based on the Shapley decomposition

(see Shapley, 1953, Sastre and Trannoy, 2002 and Shorrocks, 2013). The method originated from

the co-operative game theory, where a coalition of players are rewarded for their contributions

towards a shared goal. By averaging over the marginal contributions of each factor, the Shapley

decomposition exhaustively attributes the total inequality to the covariates. When applied to

inequality analysis, the method can decompose an IOP estimate into positive, proportional

contributions from individual covariates. In addition, the Shapley decomposition alleviates the

bias due to a large set of circumstances and provides an upper bound for IOP that is smaller

than the estimate from the non-parametric model adopted by many research (Checchi and

Peragine, 2010).

The Shapley decomposition, however, is computationally burdensome to implement. Since

contributions from a regression with k covariates need to be averaged over all possible permu-

tations of the model, the total number of regressions to be estimate is a factorial function of
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k. This means that timely computation is impossible even for modern computers if more than

dozens of covariates are employed. However, by randomly sampling from the set of all model

specifications, we can produce approximate Shapley decompositions that are fast yet accurate

enough to be practically viable.

When applying Shapley decomposition to measure IOP, most literature uses a parama-

tric model (Björklund et al., 2012). In this paper, we implement the Shapley decomposition

method using a parametric model and a non-parametric model. The Shapley implementation

on a non-parametric model reduces the overestimation due to limited data and a large set of

circumstances. Therefore, when applying the new methods to Australia data, in addition to

provide a lower bound estimate of IOP like the study from Martinez et al. (2017), we provide an

interval estimate showing that IOP in Australia is at least around 5% and at most 20% during

2001 to 2017.

The rest of the paper is structured as follows. Section 2 outlines some fundamental con-

cepts in IOP measurement and explains our sampling-based decomposition method. Section 3

presents the simulation results using the methods introduced in section 2. Section 4 documents

the application of the Shapley decomposition on the Australian data. Section 5 provides the

conclusion.

2 Methodology

2.1 The conventional framework in measuring inequality of opportunity

To measure IOP, we adopt Roemer’s (1998) framework, wherein income is determined by a

set of circumstances and efforts. Assume that circumstances and effort are independent with

each other (Checchi and Peragine, 2010) and circumstances are a set of discrete variables.

With a sufficiently granular set of circumstances, the population can be divided into different

“types”, where all individuals within the same type share identical circumstances. Similarly, the

population can also be stratified based on efforts into different “tranches”, where all individuals

within the same tranche exert the same level of effort. IOP can, therefore, be the inequality

that occurs between types (as this captures inequalities identified by observed circumstances)

or within tranches (as this captures variations attributable to unobserved circumstances). As

circumstances are more readily measurable than efforts, most researchers prefer to use types to
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calculate IOP, which is known as the ex ante meausre of IOP1.

Given Roemer’s framework, IOP can be computed using a non-parametric approach (Checchi

and Peragine, 2010). We denoted the whole set of “types” as T = {t1, t2, ..., tK}. If there are Nk

samples in tk for k ∈ {1, ...,K}, we can replace each individual income ytki into its type-average

income ȳtk . Given this counterfactual income Ȳ = {N1ȳ
t1 , ..., NK ȳtK}, IOP can be computed

as:

IOPnonpara =
I(Ȳ )

I(Y )
(1)

where the numerator captures the inequality in opportunity, and the denominator the overall

inequality. IOPnonpara ranges from zero to one; zero indicates that no income inequality is due

to the contribution of circumstances, whereas one indicates that all income inequality is due to

the contribution of circumstances. I(·) is an inequality measure that satisfies certain axioms

such as scale independence and transfer sensitivity. Like most IOP research, this paper uses a

path-independent inequality measure – mean log deviation (MLD).

An alternative approach is to use a parametric model. The most common one is the linear

regression model:

yi = C ′
iβ + εi (2)

where Ci is a vector of circumstances for individual i, yi their income, β a parameter vector to

be estimated, and the error term εi that captures unobservable factors including efforts.

The fitted value ŷi = C ′
iβ̂ is then interpreted as the baseline income that an individual with

the set of circumstances C ′
i could be expected to achieve. Variations in ŷi across i = 1, ..., n

therefore reflect differences in initial conditions. IOP can then be measured as:

IOP para =
I(ŷ)

I(y)
(3)

Since we use a relatively large set of circumstances, results could be biased differently be-

tween the parametric and the non-parametric approach. Non-parametric estimates, while being

flexible and intuitive, suffers from two problems. Firstly, since circumstance variables inter-

sect, the set of cells required to exhaustively define types becomes extremely large very quickly,

making non-parametric estimates vulnerable to the curse-of-dimensionality. As a result, they

require either a very large dataset or some form of restrictions to be computationally feasible.

1The IOP calculated based on both circusmtances and effort are known as the ex post measure of IOP

4



Secondly, sparse cells offer little scope for capturing variation. For instance, if a cell contains

a single income, the contributions of circumstances and efforts cannot be disentangled. On

the other hand, a non-parametric model takes non-linearity into accounts. The model does not

over-smooth the data and results in an underestimated IOP. In comparison, a parametric model

such as a linear regression model, avoids the curse-of-dimensionality as long as the number of

circumstances variable is significantly smaller than the number of observations. However, it

could under-fit the data due to the assumption of the linearity.

2.2 Applying the Shapley decomposition to measure inequality of opportunity

To isolate the contributions from individual covariates and mitigate the bias given a large

set of circumstances, we use the Shapley decomposition (or value) approach. The method

was originally proposed to solve allocation problems in the cooperative game theory (Shapley,

1953). It can also be used to measure IOP. Suppose income y is exclusively determined by factors

K = {E,C} including effort E and circumstances C. To compute the Shapley value associated

with factor k ∈ K, denoted SVk, we first generate all unique permutations given the set of all

circumstances and efforts K = {E,C}. We define this permutation set as Ω. In this case, Ω

contains |K|! number of elements. For each order r in Ω, we select the subset Sr preceding k and

compute the inequality I(Sr) given the subset S. We also compute the inequality I(Sr+k) given

the subset {Sr, k}. Therefore, for each order, the marginal contribution of k to I is I(Sr + k) -

I(Sr).

The Shapley value is the average of such marginal contributions given all the orders of

permutations of set Ω(Shorrocks, 2013):

SV k =
1

|K|!
∑
r∈R

(I(Sr + k))− I(Sr)) (4)

Based on the Shapley value for each circumstance variable, one can compute the measure

of IOP by summing up the Shapley values of all circumstance variables:

IOPshap =
∑
ck∈C

SV k (5)

One issue for this computation of the Shapley value is how to compute the counterfactual

income distribution given a subset Sr. To solve this problem, we use both a paramatric model

and a non-paramatric model. The paramatric model with Shapley decomposition has been
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used in other studies (Björklund et al., 2012) for measuring IOP, while this paper proposes a

non-paramatric model with the Shapley decomposition.

For the parametric model, we use a linear regression model described in equation (2) with

circumstance variables and efforts as residuals. Since ŷi = C ′
iβ̂ is simply a linear sum of cir-

cumstances weighted by a parameter vector, we can treat circumstances and efforts as income

sources. Sastre and Trannoy (2002) propose two main methods to decompose an income dis-

tribution into income sources – a zero income distribution and equalized income distribution.

The zero income distribution drops income sources excluded from subset Sr, while equalized

income distribution only removes the variation of income sources excluded in subset Sr by re-

placing each income source with the average value. In this paper, we use the equalized income

distribution with the linear regression model.

A non-parametric model can also be used for the Shapley decomposition. To compute the

Shapley value for one factor k, instead of using the whole set of circumstances, we only use

subsets Sr and Sr + k to divide data for each order r into types.

In the conventional approach of the non-parametric model, the measure of IOP could be

biased given limited observations and a large set of types. However, applying the Shapley

decomposition to a non-parametric model provides a framework to handle this problem. This

is because in the computation of the Shapley value, only a subset of circumstances is used to

generate types in most of the combinations. For example, one combination could be that all

circumstances affect income, so the sample is divided into the maximum number of types. In this

case, the result could be the most biased and overestimated like the conventional non-parametric

approach does, as more types could end up with fewer observations. Another combination could

be that all circumstances have no effect on income, so the sample is divided into the minimum

number of types, resulting in an underestimated value. However, most combinations locates in

between. In the computation of SV k, all these extreme combinations are averaged with other

combinations with a subset of circumstances. Because of the averaging, the overestimation

given limited observations and a large number of types is mitigated.

2.3 Sampling-based Shapley decomposition

One issue of the Shapley decomposition approach is that the calculation of one SV k requires

at least 2|K| computations2. The computational burden increases exponentially as the number

2Another way to compute the Shapley value is to find all the subset in K without generating the set of
all permutations. In this case, there are 2|K| steps to compute one Shapley value. The approach we use with
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of factors |K| increases. To circumvent this computational complexity, Björklund et al. (2012),

for instance, group selected circumstance variables and decompose income inequality according

to the contributions of no more than 10 groups. Obviously, this solution scarifies the details on

contributions of individual variables for higher computation efficiency.

We can avoid such a trade-off by applying a sampling-based approach to the Shapley de-

compositions (Castro et al., 2009).3 In this approach, we randomly select m samples from the

permutation set Ω and then compute the marginal contribution of k ∈ K for each selected

sample. The mean of the sampled marginal contributions is the sampled Shapley value for k

(denoted as ŜV k ), as the mean of all marginal contributions is the true Shapley value:

ŜV k =
1

m

m∑
i=0

I(Si
r + {k})− I(Si

r) (6)

where ri ∈ Ω is the order being selected.

Given the sample mean, we can also compute the sample variance:

V ar(ŜV k) =

∑
(I(Si

r + {k})− I(Si
r)− (ŜV k))2

m− 1
(7)

The error gets smaller as m gets larger.

To select a proper sample size, we use eight factors to experiment with the computation of

the sampled ŜV k. The result is shown in figure 1. The x-axis shows the sample size and the

y-axis shows the average marginal contribution (i.e. the sampled ŜV k). We randomly draw

samples given a sample size and compute the corresponding sampled ŜV k. We find that the

sampled ŜV k quickly converges to the real value, SVk, as the sample size increases. In fact, ŜV k

is very already close to SVk when the sample size reaches approximately 5,000. Therefore, in our

implementation, we select 10,000 samples so that the Shapley approach can be computationally

efficient with negligible bias.

the set of all permutations requires |K|! steps. We use this approach because the Shapley value can be easily
interpreted as the average of all marginal contributions. In either approach, the computational complexity grows
exponentially.

3Another way to be more computationally efficient is to use a more efficient programming language. To
implement the Shapley decomposition, we use a C programming package under Python.
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3 The conventional methods versus the sampling Shapley decomposition:

Comparison based on simulated data

Given a large set of circumstances and a limited number of observation, the measures of IOP

could be substantially different using different methods. To compare with methods introduced

in section 2, we generated a date set with 16 circumstances, each of which has two categories

(e.g. male and female for the gender circumstance). In this case, there are 65,536 types in

total. To make sure each type has enough observations. We generate 100 samples in each type,

resulting in 6,553,600 observations.

We consider two data generation processes (DGPs). The first DGP is based on the linear

model of equation 2. The second DGP addes some interaction terms of circumstances to the

linear model, changing it into a non-linear model. Given both data, we are able to check how

each method performs with or without non-linearity.

The methods we use are (i) the conventional parametric model (Conv.Para) stated in equa-

tion 2 and equation 3, (ii) the conventional non-parametric model (Conv.nonPara) stated in

equation 1, (iii) the Shapley parametric model (Shap.Para), and (iv) the Shapley non-parametric

model (Shap.nonPara). We apply these methods on either the whole simulated data or a pro-

portion of the data to mimic the use of sampled data in reality. We consider the proportions

of 0.1%, 1%, 5%, 10%, 50%, and 100% respectively. Due to the restriction of computational

power, we only use the Shapley methods on the 0.1% and 1% samples.

Figure 2 presents the results for the IOP estimates using different proportion of simulated

data. Panel (a) and (b) show the IOP estimates from the linear and non-linear models, respec-

tively. In the simulation based on the linear DGP, the true IOP value is 0.55; in the simulation

based on the non-linear DGP, the true IOP value is 0.58. The simulation results show that

the parametric model and the non-parametric model converge as the proportion of the used

data increases. For the simulated data with no interaction terms, the parametric model and

the non-parametric model provides the same estimate of IOP; while for the simulated data with

interaction terms, the parametric model underestimates IOP as it neglects interaction terms

and treats the data generation process as a linear model.

For the Shapley method, we find that the parametric Shapley decomposition provides the

same results as the conventional parametric model; while the non-parametric model provides

lower estimate comparing to the conventional non-parametric model. In addition, the non-
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parametric Shapley estimates converge faster than the conventional non-parametric model. As

the non-parametric model considers non-linearity, it can be viewed as an upper bound of IOP.

As a result, the IOP estimates provided by the Shapley methods have a narrower interval

comparing to the IOP provided by the conventional methods, because the Shapley methods

mitigate the over-estimations due to limited observations and sparse types.

To conclude, the Shapley methods can provide a narrower interval with less bias from data

with a large set of circumstances, where the lower bound estimate is the value of IOP if circum-

stances have linear effects on income, whereas the upper bound estimate is the value of IOP if

circumstances have non-linear effects income.

4 The applications of the Shapley decomposition on HILDA 2001-2017

4.1 Data

The data we use in this paper comes from the Household, Income and Labour Dynamics

in Australia (HILDA) Survey. HILDA is an approximately representative household-based

longitudinal study started in 2001. It covers more than 6,500 households with about 20,000

individuals in Australia. It collects information related to a wide range of topics such as income

dynamics, socio-economic status, education and health.

Our dataset covers the period from 2001 to 2017. Table 1 shows the summary statistics

of the dataset for selected years. The variables we use include income and variables related

to circumstances. We report circumstance variables in proportions except for the number of

siblings. We focus on individuals aged from 15 to 65. In 2001, data from 13,252 individual

observations were collected. However, due to the sample attrition, the sample size gradually

decreases from 13,252 in 2001 to 12,184 in 2010. In 2011, HILDA added an additional sample

containing more than 5,000 individual observations. Therefore, the sample size in 2011 increases

to 15,912 and then gradually decreases to 15,343 in 2017.

To compute IOP, we use individual income as well as household equivalent income, the

latter one is the household income per effective member and is calculated as the real household

income divided by the square-root of household size. Most literature uses household income

to measure income inequality. However, IOP is more related to individual characteristics like

family backgrounds and parents’ socioeconomic status. Therefore, we use individual income in

this paper to measure IOP. We note that some research (e.g. Lefranc et al., 2008) uses household
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income to measure IOP. These studies treat household income as individual standard of livings.

In this study, we also present the measure using household equivalent income. A comparison of

the IOP estimated based on individual and household equivalent incomes allow us to examine

how intra-household transfers may affect IOP.

For both incomes, we consider private income, gross income, and disposable income. Private

income includes wages and salary, business income, investment income, regular private pensions

and transfers and other irregular income. Gross income contains private income and government

income and non-income support. These public supports include government pensions, parent-

ing payments, family payments, government bonus payments, allowance and other government

benefits. Disposable income is gross income net of taxes, which include the sum of income tax,

the Medicare Levy, taxes on redundancy payments less offsets and dividend imputation credits.

A comparison of the IOP estimated based on these three types of incomes allow us to examine

how taxes and government transfers may exacerbate or mitigate IOP.

We use 13 circumstance variables including individuals’ gender, migration status, family

backgrounds and their parents’ characteristics that, to divide the sample into 115,200 possible

types. These variables are used in many empirical studies of IOP. For example, Checchi and

Peragine (2010) use gender, geographic locations and parental educational level as circumstance,

and Ferreira et al. (2008) use ethnicity, father’s occupation, parents’ education and birth region.

In Australia, individuals could be disadvantaged if they are female, migrants, refugees, or

indigenous people. In our dataset, around 52% of individuals are female. Migrants consist of

around 23% of the population. Among migrants, more than half of them come from a non-

English speaking country. Around 2% of the population is Indigenous Australian, and another

1% are refugees.

We also include country of birth for respondents and their parents, respectively, as these

variables might suggest respondents’ migration status and their upbringing. For example, if both

parents are from non-English speaking countries, children could live in a non-English speaking

environment, which might have an impact on them. To capture the difference in parents’

country of birth, we grouped this characteristic into three categories – at least one parent was

born in Australian, both parents were born in foreign countries but at least one was born in

an English-speaking country, both parents were born in non-English speaking countries. We

found that around 17% of the respondents have both parents coming from non-English speaking

countries, and around 12% of the respondents have at least one parent immigrating from an

10



English-speaking country.

In addition, we include variables related to respondents’ family backgrounds. Around 34%

of the respondents are the oldest child in the family. Around 80% of the respondents reported

living with both own parents in childhood. Around 3% of individuals have no siblings, 20% one

sibling, 27% two siblings, 28% three or four siblings, and 20% five or more siblings.

To capture parents’ socioeconomic status (SES), we use variables that show whether each

parent was employed and whether each parent worked as a labourer when the respondent was

a child. On average, fathers’ employment rates are around 84% and mothers’ 50%.

In addition, we include age as a circumstance. Age is considered as a demographic variable

in some literature. For example, Checchi and Peragine (2010) compute IOP for each age cohort,

and Jusot et al. (2013) treat age cohort as a demographic variable in the regression. In this

paper, we treat age as a circumstance because it is beyond individual’s control and fits the

definition of circumstances.

4.2 Income inequality in Australia based on Gini coefficients

We first measure income inequality in Australia from 2001 to 2017 using Gini coefficients.

Results are shown in Figure 3. The inequality trend for individual income and household equiv-

alent income are presented in the upper and lower panels, respectively. The solid line represents

the computed Gini coefficients using private income, the dashed line with circle marks using

gross income, and the dashed line with cross marks using the disposable income. In general,

inequality in both individual income and household equivalent income decreased during 2001

and 2008 and increased during 2009 and 2017. However, these trends are negligible compared

to the overall level of inequality. The Gini coefficient is around 0.3-0.33 in household disposable

income and around 0.43-0.46 in individual disposable income. The differences between these

two sets of figures indicate that intra-household transfers reduce inequaity by approximately

0.13 Gini points, or about one-third of individual income inequality.

For individual income, we find that redistribution by the public transfers reduce income

inequality by roughly 0.06 Gini points, which is approximately an 11% decrease. The tax policy

reduces income inequality by a further 0.04 in Gini points, which is a further 8% decrease.

Household equivalent income inequality shows an even bigger reduction as a result of public

transfers and taxation. The Gini coefficient reduces by about 0.1 points (or 18%) due to

public transfers and another 0.05 points due to taxation (or 9%). These results suggest that
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government transfers and taxation are efficient in reducing income inequality, but government

transfers reduce income inequality twice as much as taxation.

Our results are consistent with other findings in the literature. For example, Whiteford

(2017) estimates that inequality in Australian household income is between 0.31 and 0.34 as

measured by the Gini coefficient using Australian Bureau of Statistics (ABS) data between 2001

and 2014. His estimation using HILDA is around 0.3, which is slightly lower than the results

from ABS data. Similar to Whiteford (2017), Kaplan et al. (2018) use ABS data and estimate

that the Gini coefficients of disposable household income in Australia is around 0.30 in financial

year 2004 and 0.32 in 2010.

4.3 The effect of differing number of circumstances on measuring IOP

To understand how differing opportunity sets contribute to these inequalities, we first use

respectively the parametric and non-parametric models by replacing individual income with the

average income of their types. In Figure 4, we test the performance of both models for different

number of circumstances using both the Gini coefficient and MLD. The x-axis is the number

of circumstances. For our dataset, the maximum number of circumstances is 16. The y-axis is

the direct IOP measure.

If using the whole set of circumstances, IOP would be 30% based on the parametric model

and 40% the non-parametric one. In both cases, since we divide the population into too many

types, IOP could be over-estimated. As discussed previously, a common practice in the literature

is to use a subset of observed circumstances to measure IOP. To investigate the implication of this

practice, we set the number of circumstances from 1 to 15 and randomly draw a subset from the

whole set of circumstances. In figure 4, the band represents the confidence interval corresponding

to the draw given a number of circumstances. For example, if using six circumstances, we find

that both the non-parametric model and the parametric model give similar results. However,

the confidence intervals could range from around 14% to 21%. The differences between the

parametric and non-parametric models widen as the number of circumstances increase further.

The results imply that selections of different subsets of circumstances could lead to significant

difference in IOP measures.

The conventional approach could also bias the results of the inequality contributions of

individual circumstances. In Figure 5, we demonstrate the inequality contribution of gender in

2002 computed using the conventional approach and the Shapley value for gender. The figure
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shows how the contribution of gender changes related to the number of factors (including both

circumstances and effort) excluding gender considered in the computation of the SVk. If no other

factor is considered in the computation, the contribution of gender is the difference between the

inequality when gender is considered and the inequality when gender is not considered. In this

case, the sample is only divided into two categories based on gender, which could lead to an

over-estimation of the contribution of gender.

Figure 5 shows that the contribution of gender is 5% if no other factor is considered. On

the other hand, if we consider many other observed factors, the contribution of gender is the

difference when we have an additional slide of the data based on gender. This finer division

could lead to gender contributing relatively much less to income inequality. As shown in Figure

5, the contribution of gender is close to 0 if all other factors are considered. However, after

averaging the contributions associated with different number of factors are considered, that is,

around 1.2% for the gender variable in 2002. The bias of a large set of types is mitigated by

the averaging.

4.4 Inequality of opportunity in Australia during 2001 - 2017

Using the sampling-based Shapley approach, we are able to measure IOP using the whole

set of circumstances with less over-estimation and bias due to the arbitrary selection of subsets.

We compute IOP for disposable incomes during 2011 to 2017 using both the Shapley parametric

and non-parametric approach and the conventional parametric and non-parametric approach,

and present the results in Figure 6. For inequality measure, we use MLD for all empirical

methods.

We find that IOP is around 5% if using parametric approaches. This result is close to

Martinez et al. (2017)’s estimation using the conventional parametric model with the same

dataset. Since the parametric model only assume a linear relationship between circumstances

and income, the results could represent a lower bound of IOP in Australia. To compensate

the oversimplified parametric model, our results from the non-parametric model shows the IOP

estimates allowing non-linear relationships between income and circumstances. However, as

we include a large set of circumstances, the conventional non-parametric model is likely to

over-state IOP. Our results show that this figure is around 30%. After applying the Shapley

decomposition on the non-parametric model, we reduce this over-stated IOP to around 20%.

Although this figure could still overestimate IOP as our sampling size is around 10,000, it
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provides a much lower estimation comparing to the conventional non-parametric model. We

can conclude from the non-parametric model that IOP is around 20% at most in Australia if

we consider non-linear relationships between factors.

Zero income could affect inequality measured by MLD as MLD is more sensitive to low

incomes. Therefore, we compare IOP measure with and without zero income as a robustness

check. The results are shown in Figure 7. We find that the estimates of IOP for disposable

incomes are similar with and without zero income. However, the estimates yield different results

if we use private incomes especial for parametric models. This is probably because there are

much more zero incomes in private incomes than in disposable incomes. When we include

zero incomes in private incomes, the Shapley decomposition on the parametric model provides

an overestimated IOP comparing to excluding zero incomes. Therefore, one should apply the

Shapley approach to data including many zero outcome observations with caution.

4.5 The decomposed contributions of each factor to income inequality

Using the Shapley decomposition, we compute the contribution of each circumstance to

income inequality. In terms of income, we use individual disposable income in 2017. The full

results are shown in Table 2.

We find that IOP in 2017 ranges from 8.75% to 22.96%. The biggest contributor is gender,

accounting for around 5 percentage points of the inequality in disposable individual income.

The figure suggests a wide income gap between genders. The contribution of gender based on

the parametric estimate is similar to that on the non-parametric estimate, which suggests that

gender has few interactions with other factors.

Parents’ occupation during respondents’ childhood is another contributor to income inequal-

ity. Whether parents were employed and whether parents did labour work account for around

0.8 to 4.7 percentage points of income inequality in total. The gaps between the parametric

and non-parametric estimate suggest that parents’ occupation interacts with other factors. The

estimate could be largely underestimated if only the linear relationship is assumed between

income and circumstances.

Another big contributor to income inequality is age. Grouping individuals into five age

cohorts, we find that age contributes 1.23 to 4 percentage points of income inequality. In this

paper, we treat age as circumstances. Some literature also argue that age is a demographic

characteristic and it should be excluded from circumstances. As we provide the individual
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contribution of each circumstance, one can exclude age, compute IOP and compare this result

with other literature that excludes age.

The number of siblings also contributes to individual disposable income. Its contribution

ranges from 0.4 to 2.46 percentage points. These contributions from number of siblings are

consistent with Parr’s (2006) finding that number of siblings affects education attainment,

income, and wealth in Australia.

Note that the Shapley decomposition yields some negative results for the contribution of

individual circumstances. For example, the contribution of individuals born in other English-

speaking countries is -0.11 percentage points and parents born in non-English speaking countries

is -0.03 percentage points. Since we adopt the equalized income distribution to compute the

Shapley value with the parametric model, a negative figure suggests that these circumstances

contribute to reducing income inequality.

5 Conclusion

This paper has presented both a methodological and an applied contribution to the literature

on inequality of opportunity. We have shown that with some modern computational innova-

tions, the Shapley Value can be operationalised far more effectively in applied work, providing

researchers a tool to decompose regressions and inequality metrics into additive contributions

from explanatory variables. More importantly, the Shapley decomposition approach provides

a less over-estimated IOP than the conventional non-parametric approach given a large set of

circumstances, allowing researcher to consider more comprehensive sets of circumstances. The

implication of this sort of innovation is potentially far-reaching; for example, Shorrocks (2013)

suggests that Shapley decompositions could be presented alongside standard significance testing

in regression models in all-purpose applied work.

Our empirical contribution relates to the income distribution in Australia since 2001. We

provide an interval estimate of IOP using the Shapley approach. On the one hand, the lower

bound represents the contribution of circumstances to income inequality based on linear rela-

tionships between circumstances and income; on the other hand, the upper bound indicates the

contribution of circumstances based on non-linear relationships between circumstances and in-

come. The interval estimates computed using the Shapley decomposition are narrower compar-

ing to the estimates computed using the conventional parametric and non-parametric methods

given a large set of circumstances, suggesting that the Shapley decomposition reduces the bias
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due to limited data.

Using our decomposition technique, we studied the evolution of economic inequality and

the relationships between income and pre-determined factors such as migrant status, gender,

and parental socio-economic level. We find that gender is the single largest source of income

inequality in Australia.

6 Figures and Tables

Figure 1: The Convergence of the sampling Shapley value (Based on MLD)

Source: Authors’ calculation.
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Figure 2: IOP estimates using simulated data (Conventional vs. Shapley methods)

(a) With interaction terms

(b) No interaction terms

Source: Authors’ calculation.
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Figure 3: Income Inequality in Australia (2001 - 2017)

(a) Gini coefficient

(b) Mean Log Deviation

Source: Authors’ calculation.
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Figure 4: Relationships between No. circumstances and IOR

(a) Gini Coefficients

(b) Mean Log Deviation

Source: Authors’ calculation.

Figure 5: The computation of the Shapley value for gender with different No. factors in 2002)

Source: Authors’ calculation.
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Figure 6: Trends of IOP in Australia: Conventional vs. Shapley methods

Source: Authors’ calculation.

Figure 7: IOP estimates with and without zero incomes)

Source: Authors’ calculation.
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Table 1: Summary Statistics (2001-2017 Year Averaged)

Individual private income 61337.43
Individual gross income 65762.32
Individual disposable income 52840.48
Household private income 72876.49
Household gross income 77781.56
Household disposable income 62836.29
Female 0.52
Migration status(Respondents)
English-speaking country 0.10
Non-English-speaking country 0.13
Aboriginal 0.02
Refugee 0.01
Migration status (Parents)
English-speaking country (At least 1) 0.12
Non-English-speaking country (All parents) 0.17
Household conditions
Is the oldest child in the family 0.34
Number of siblings
One sibling 0.22
Two siblings 0.27
Three or four siblings 0.28
Five or more than five siblings 0.20
Living with both own parents 0.80
Parents’ occupation status when respondents were children

Employed (Father) 0.84
Employed (Mother) 0.50
Mother worked as a labourer 0.13
Father worked as a labourer 0.09
Age Group
25 to 34 0.26
34 to 44 0.26
45 to 54 0.26
55 to 64 0.2
Observations 179465
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Table 2: The contribution of circumstances to inequality in
disposable income in 2017

Shap.Para Shap.nonPara

Female 5.08% 5.22%
Country of Birth (English) −0.11% 0.60%
Country of Birth (Other) 0.18% 0.57%
Parents CoB (English) 0.14% 0.72%
Parents CoB (Other) −0.03% 0.67%
Aboriginal 0.24% 0.75%
Refugee 0.06% 0.32%
Firstborn 0.15% 1.20%
One Sibling 0.07% 0.67%
Two Siblings 0.03% 0.50%
Three or Four Siblings 0.04% 0.59%
Five or More Siblings 0.26% 0.70%
Live with Parents 0.48% 1.62%
Employed (Father) 0.21% 1.09%
Employed (Mother) 0.18% 1.20%
Labourer (Father) 0.30% 1.18%
Labourer (Mother) 0.29% 1.21%
Age 25-34 0.16% 0.46%
Age 35-44 0.26% 1.69%
Age 45-54 0.27% 0.80%
Age 55-64 0.54% 1.14%
IOP 8.75% 22.96%
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Castro, J., Gómez, D., and Tejada, J. (2009). Polynomial calculation of the Shapley value based

on sampling. Computers & Operations Research, 36(5):1726–1730.

Checchi, D. and Peragine, V. (2010). Inequality of opportunity in Italy. Journal of Economic

Inequality, 8(4):429–450.

Cohen, G. A. (1989). On the currency of egalitarian justice. Ethics, 99(4):906–944.

Corak, M. (2013). Income inequality, equality of opportunity, and intergenerational mobility.

Journal of Economic Perspectives, 27(3):79–102.

Ferreira, F. and Gignoux, J. (2011). The measurement of inequality of opportunity: theory and

an application to Latin America. Review of Income and Wealth (forthcoming).

Ferreira, F. H. (2019). Inequality as cholesterol: Attempting to quantify inequality of opportu-

nity. Policy Research Talk.

Ferreira, F. H. G., Molinas Vega, J. R., de Barros, R., and Saavedra Chanduvi, J. (2008).

Measuring inequality of opportunities in Latin America and the Caribbean. The World Bank.

Jusot, F., Tubeuf, S., and Trannoy, A. (2013). Circumstances and efforts: how important is their

correlation for the measurement of inequality of opportunity in health? Health economics,

22(12):1470–1495.

Kaplan, G., La Cava, G., and Stone, T. (2018). Household economic inequality in Australia.

Economic Record, 94(305):117–134.

23



Lefranc, A., Pistolesi, N., and Trannoy, A. (2008). Inequality of opportunities vs. inequality of

outcomes: Are western societies all alike? Review of Income and Wealth, 54:513–546.
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