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As economies shift from tangible to intangible investment, how to deflate intangibles 
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I. INTRODUCTION 

 

As economies shift from tangible to intangible investment, how to deflate intangibles 

becomes a more important issue in practice. But how do we measure properly the real value of the 

intangible investment?  What, indeed, do we mean by the real value of intangible investment? Can we 

draw a simple parallel between tangible and intangible investment?   

In this paper, I attempt to explore the speed of change of intangible investment which leads to 

rapid depreciation.  As I do so, I intend to raise questions about how to estimate the deflation of 

intangible investment and the contribution of intangible investment to the economy.  Elsewhere I and 

other economists have raised questions about the scope of what to consider intangible investment, in 

particular, whether to include consumer and organization capital as part of intangible investment, but 

here we look to the core of intangible investment – research and development – to try to understand 

what we mean by depreciation and what we mean by deflation of intangible investment. In exploring 

this question, I raise more questions than I answer. 

Intangible capital differs from tangible capital in that intangible capital is nonrival, and 

therefore needs to be protected by intellectual property rights.  Depreciation of intangible capital 

appears to reflect a combination of the obsolescence of intangible capital and its loss of intellectual 

property protection.  Patents – such as those that protect pharmaceuticals – are intended to provide 

rewards to innovators who develop the patent-protected novel products and processes in exchange for 

disclosure of the innovation; these rights may be contrasted with those that protect trade secrets, where 

disclosure is not part of the quid pro quo.  This disclosure then becomes common knowledge that is 

permanently available to the economic system. 

Our understanding of biology, biochemistry, biophysics, and biotechnology advanced rapidly 

over the course of the first two decades of the 21st century, spearheaded by a very rapid decline in the 

cost of sequencing DNA and RNA, a decline faster than the Moore’s Law rate which made the latter 

half of the 20th century the digital age. This biochemical knowledge in turn has permitted us to 

understand, in real time, the evolution of the coronavirus and the waves of infection arising from its 

mutations. These advances do not appear in our measures of intangible investment.   
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However, they do appear in measures of profit. Although the proportion of GDP in the US 

devoted to tangible investment (gross domestic private investment less intellectual property (IP) 

products) has fallen from a ten-year moving average of 17 percent in 1976-85 to 12.6 percent in 2011-

2020, intangible investment in IP has risen from 2.0 to 4.5 percent over the same periods.  Despite the 

drop in tangible investment, corporate profits during this period have risen relatively dramatically.  

Using the same periods, corporate pre-tax economic profits were 7.9 % in 1976-85 and rose to 11.3 

percent in 2011-2020, an increase of 3.4 percentage points.  And after-tax economic profits rose from 

5.7 percent to 9.5 percent, an increase of 3.8 percentage points. Thus intangible investments during 

this period appear to be showing up big time in measures of profit.  

The extraordinarily rapid development and testing of the vaccines protective against COVID-

19 showed both the importance of intangible investment and the difficulties of measuring its value.  

The intangible investments were not the end-product, rather they were intermediary to the production 

and distribution of the vaccines themselves.  And this real value of the vaccines is not, under System 

of National Accounts (SNA) rules, measured as personal consumption expenditures but are 

government expenditures and therefore captured at input prices. For we all must appreciate the value 

to the global economy of having vaccines that – although they have proved unable to stop the virus 

from mutating and becoming endemic – greatly ameliorated the consequences of the pandemic. The 

development of the capability to rapidly vaccinate a large portion of the global population was 

certainly a triumph of the global economic system, but this value is not reflected in our GDP 

measures. Nevertheless, the real value of the vaccines, which have helped to moderate the pandemic 

and permitted the global economy to return toward normalcy is not captured. And the extraordinary 

speed with which vaccines were developed is a tribute to the rapid advance of intangible investment, 

but these too are unmeasured in our data. 

The standard methodology of price measurement, which entails measuring a product of 

unchanged       quality from one month to the next, is difficult to apply to innovation, where activities 

are inherently  different from one period to the next. A solution is to use either a general price 

deflator, such as the PCE or GDP deflator, which captures the opportunity cost of the resources 

that go into intangible investment, or input price deflators (which posits zero productivity 

growth) and add back in a measure of productivity. This methodology has the effect of not 

affecting the aggregate productivity growth rate. In practice, this aim may not be achieved.  
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First, input price deflators may be poorly measured. We will present a number of instances 

in which input prices of products used in innovation fall dramatically but are not captured in 

existing deflators. These rapid        price declines are generally not captured by wholesale price 

indexes. As I will show, it is possible to directly measure improvements in quantifiable 

dimensions of price and quality.  For example, we can measure the rate of price decline of DNA 

sequencing, as tracked by the US National Human Genome Research Institute.1 

Second, one could use the rate of obsolescence of intangibles as a method of deflation, 

arguing that the rate of obsolescence approximates the rate of technological progress. 

Unfortunately, calculating obsolescence for intangible investment is quite difficult, and 

alternative papers have delivered very disparate results. Alternative papers have used patent 

renewal, amortization, production function and market value (Li and Hall, 2016, Table 2 

provides a literature review of recent studies.) Nevertheless, some measure of depreciation is 

necessary if we are to include intangible investment in our capital accounts, as SNA methods 

require. We will examine the spread of depreciation measures for some important categories of 

research and development.  

Finally, one can look to the stream of outputs of the intangibles and the expected present 

value of     the utility stream -- the consumer and producer surplus -- that the intangibles result in. 

This depends on the accurate measurement of this utility stream. Unfortunately, the gains in 

utility are often not captured in output measures, as the failure to capture the consumption 

benefits of the COVID-19 vaccines illustrates.   

A further difficulty in measuring the real value of intangible investment arises because 

the social and private values of intangible assets diverge over time. A new method for 

accomplishing a goal permanently raises productivity, even if the patent that gives the inventor 

temporary monopoly rights over the product expires. In this case, the rate of obsolescence 

reveals the rate of technological progress, rather than a wearing out of the product or its loss of 

 
1 Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome 

Sequencing Program (GSP) www.genome.gov/sequencingcostsdata 

 

https://www.genome.gov/sequencingcostsdata
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value.  In contrast, information about the fashions that individuals prefer at one time may 

become less intrinsically valuable in a way similar to the wearing out of a machine.   

Another illustration of the divergence between private and social value is open-source 

software, which is available freely but may embody considerable private value as well as distinct 

social values. Creators – programmers, scientists, artists, hobbyists, entertainers – often enjoy 

their acts of creation and may make their products freely available without compensation (e.g., 

Sichel and von Hippel, 2021). Moreover, a firm may use open-source software that supports its 

main business activity, if by using open-source the firm is able to gain cooperation from other 

firms without encountering concerns about hold-up problems.  For example, Google provided its 

Android operating system on an open-source basis, which permitted cellphone producers such as 

Samsung to rapidly develop an alternative to the iPhone, enabling Google’s search franchise to 

ensure continuing access to the mobile Internet. 

Additional interesting issues arise because large data sets are increasingly recognized as 

intangible assets. Data may be of value for a prolonged period, or it may be perishable if its 

timeliness is important.  

I take as a starting point for why we wish to measure real intangibles, the question of how 

we statistically explain economic growth, that is, the standpoint of growth accounting.  As is well 

known, in Solow’s (1957) early discussion of economic growth, he found that the growth of 

observable factors of capital and labor services did not account for all of US economic growth 

and that technological progress, quantified as a residual, accounted for an important fraction of 

the long run US growth rate.  Beginning with Romer’s (1990) work and followed by the steady 

inclusion of intangible investments in US national accounts, as suggested by Corrado et al (2005) 

and Nakamura (2003), endogenous growth theory has raised the possibility that the sources of 

technological growth might be quantified.  However, there are fundamental differences between 

tangible investments and intangible investments that have made the nominal and real 

measurement of intangible investment more difficult; these difficulties have not been fully 

reckoned with in national accounts. 

In this paper, I build upon the results in Nakamura (2020) to provide examples to 

illustrate these measurement methods and issues and to provide some very crude estimates of the 

impact of implementing these on the growth rate of US investment output and inflation. 
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II. INVESTMENT DEFLATION IN THEORY AND MEASUREMENT 

Before discussing intangible investment in particular, it is useful to discuss the 

difficulties of the measurement of tangible investment. These difficulties serve to remind us that 

the underlying measurement of GDP is not as cut and dried as we might hope, and that 

approximation and compromise are part of this tradition. 

Investment is a thorny element in national income accounting because it is conceptually 

not a final product that is immediately consumed, but instead a long-lived intermediate input in 

production. As such, we can view current gross production at its opportunity cost, that we could 

have used these resources for current consumption, or in terms of its benefit, the future stream of 

output that arises from it. When we use rapid declines in the price of desktop computers and 

servers to deflate these tangible investments, we are using the latter. 

Moreover, in GDP we measure gross investment, not net investment, because our 

measures of depreciation are considered somewhat shaky. Yet for many purposes, net product 

and income are of greater interest. 

 In addition, consumer durables other than owner-occupied housing are not considered 

investment but are included in consumption expenditures.  This has the unfortunate side effect of 

creating inconsistencies in treatment that depend on the economic agent: if a car is leased by a 

consumer, for example, it is considered an investment on the part of the firm doing the leasing, 

and the stream of services is purchased by the consumer is considered transportation services. On 

the other hand, if the same consumer buys the car, there is no comparable stream of services, 

only the initial purchase is recorded. 

In this section I lay out some theoretical considerations in addressing intangible 

investment and its real value.  I try to do so using a simple example but this could easily be done 

within a quality-ladders framework in which the innovator loses monopoly rights after an 

exogenous period of time if no innovator has succeeded in improving on the existing innovation 

in the meantime.  (For a textbook treatment of the quality-ladders model, see Aghion and Howitt, 

1998). 
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II.1 Tangible investment and its deflation 

Let us begin by considering what we mean by nominal and real tangible investment, 

using the example of a machine that produces a consumption good we will call a widget. Let us 

assume that one machine produces one widget with one hour of labor. Widget makers buy the 

widget-making machines from a machine producer. Naturally, two machines will produce two 

widgets with two hours of labor.  So if the cost of the machine falls, but it still produces one 

widget with one hour of labor, then the real value of the new machine remains the same as the 

outmoded machine but its price has fallen; the outmoded machine loses some of its nominal 

value due to this obsolescence. If the new machine can produce two widgets with two hours of 

labor it has the value of two of the old machines.  Assuming competition, in either case the price 

of the widget will fall to reflect the lower production cost. (As we see below, if the new machine 

is produced by a monopolist, then the price of the widget will fall less, but the difference will 

provide a producer surplus that pays for the cost of the intangible investment required to develop 

the new machine.)   

How to measure the gross and net capital stocks is straightforward, assuming the 

depreciation rate (or the lifetime) of the machine is known. In line with Tobin’s q theory, the 

value of the firm is not affected whether it borrows to purchase the machine or buys the machine 

using corporate savings.  Real purchases of machines that increase the stock of machines, 

combined with the hiring of additional labor, results in an increase in the stream of output, 

increasing firm revenues. Note that in these cases, we can account completely for growth in 

output with labor and capital, as we have defined real capital.  In practice, however, there may be 

a measurement issue: how do we know, for example, if an improved machine can produced two 

widgets with two hours of labor? Or suppose we just run the old machine faster to produce two 

widgets with one hour of labor?  In either case, we face the familiar new goods problem that 

bedevils mismeasurement. 

The depreciation rate of the tangible machine is clearly a compound of the rate of 

physical deterioration of the machine and the fall in price due to the arrival of superior machines. 

II.2 Intangible investment embedded in a tangible machine 
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The improvement in output we can think, in a stylized way, as having two origins in a 

world in which patents grant a time-limited monopoly power. First, the innovator develops a 

new, improved machine, that it can then patent and sell at a monopoly price that outcompetes the 

old machine.  In this period, there are two elements of productivity gain, producer surplus from 

the monopoly profit and consumer surplus from the decline in the widget price. In expectation, 

the producer surplus must be greater than or equal to the tangible investment.   

The intangible investment, in a growth accounting sense, that results in a halving of the 

cost of the machine, is responsible for the cut in the cost of the capital needed to produce the 

widget.   

Second, the producer’s monopoly may end either because an improved model replaces it 

(obsolescence) or the producer’s monopoly may reach the end of its patent protection, resulting 

in a fall of price as entry into the production of the machine becomes free. Both possibilities 

result in a further decline in the consumer price of the widget and additional consumer surplus, 

with the private value and producer surplus of the patent having disappeared.  This end of the 

private value of the patent is like the end of the lifetime of the machine, in that the private capital 

in each case disappears, along with the revenue stream.  However, the gain in output growth is 

permanent, and has not disappeared.  Thus if we wish to explain output growth, we must 

consider the development of the widget as permanently raising the capital stock of intangibles.  

The loss of the patent (or its obsolescence if a further improvement has been made by a new 

producer) does not imply a loss of output, unlike the wearing out of a machine.   

From the perspective of trying to measure the sources of growth, there is no depreciation 

in the value of the intangible investment. However, there is a loss of private value.  This loss of 

private value will be reflected in the depreciation of the intellectual property, as measured in 

either profitability or in the stock market valuation of the innovative firm, as captured in Gourio 

and Rodanko (2014) and Peters and Taylor (2017).   

The costs of developing the new machine must be repaid, at least in expectation, by the 

stream of profits above the cost of producing the machine earned during the period that the 

patent can be enforced.  This parallels the stream of revenue that a firm purchasing the new 

machine would earn.  However, empirically it is well-known that the cost of developing a new 

machine is often hard to estimate and the stream of profits arising may be highly uncertain, so 
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that empirically verifying the link between costs and revenues is difficult.  (A similar problem 

arises in “petroleum and natural gas drilling and exploration, including ‘dry holes’” which is part 

of private investment in structures in the US NIA.)  Thus streams of R&D, which within a firm 

tend to be relatively steady, may be hard to match up with variations in profit and stock market 

value.   

Moreover, the nominal quantity of investment is not neatly viewed via market 

transactions, unlike the purchase of the machine from the machine maker. Instead, the 

development of the machine is typically done in-house by the machine producer. Separating out 

the costs of developing (and management and testing and marketing) the machine from the cost 

of producing the machine thus makes life harder for the national income accountant.  In 

particular, capital and materials for research and development purposes may evolve at different 

rates, and the techniques and software available for researchers are also evolving.  

In terms of software, an important difficulty is open-source software that is available 

without cost.  As with scientific and mathematical advances, free products may also be sources 

of improved productivity in intangible investment.  Low or zero cost advances may also emerge 

in tangible investment, to the extent that a given capital good may be improved with software 

updates.  

A final difficulty with capturing the value of intangible capital both before and after it has 

been depreciated is that knowledge may be global and the location of the intangible capital itself 

may be ill-defined.  A well-known example is that intellectual property may be sited in a low-tax 

country; Guvenen et al (2018) provide quantitative estimates of the importance of this problem. 

Another issue is that when a pharmaceutical patent expires in, say, the United States, production 

of the generic chemical may flow to a foreign country, such as India or China. In this case, the 

product ceases to to be produced in the country where the intangible investment was made and 

consumers in the US gain consumer surplus from the product, but from an import whose value is 

excluded from GDP.  The intangible capital is supporting domestic consumption, but not 

domestic production. 

III. EXAMPLES OF THE RISE OF INTANGIBLES AND RAPID GROWTH 
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What do we mean by real investment? Why does it matter? From the viewpoint of 

endogenous growth theory, real intangible investment, as we have discussed, is an investment 

that permanently raises productivity.  

III.2 Deflating Intangible Investments 

In the US national income accounts, from 2006 to 2018 the price of intellectual property 

investments in R&D rose at a 1.9 % annual rate, compared to a 1.7 % annual rate for all of GDP.  

Thus the real price of R&D rose at a 0.2 percent rate. This can be contrasted with the 

depreciation rates for R&D which are as low as 7 % and as high as 40 %.  Are there reasonable 

grounds for thinking that the depreciation rates better reflect the rate of technological progress 

than the real prices currently in the national accounts? 

Intangible investments are difficult to deflate. Since intangible investments are creative 

processes, what is being done in one period is necessarily different from what is done in the next. 

There is no “constant quality” product whose price can be traced from period to period and 

efforts to use hedonic measures to capture, say, the number of lines of code and their quality 

have not been very successful. Instead, standard practice is to use input prices to deflate outputs, 

which would omit any productivity gain, and a measure of aggregate productivity growth is 

added to avoid distortions. A further difficulty is often that input prices are difficult to measure 

accurately when rapid changes are occurring, which I document below. 

III.2.1 Depreciation rates. One could use the rate of obsolescence of intangibles as a 

method of deflation, arguing that the rate of obsolescence must approximate the rate of 

technological progress. This may overstate the rate of progress to the extent that private 

obsolescence is due to patent expiration. Alternatively, we can attempt to quantify the rate of 

progress through some benchmark, much as Nordhaus () used the price of a lumen of light to 

measure lighting price declines, although he argued that the sort of tectonic advances made in 

lighting progress could not be included in measures of output.  We shall follow both pathways. 

We begin with Bureau of Economic Analysis measure of depreciation rates for 

intellectual property. And then I describe some areas where it is feasible to assess aspects of 

technological progress in inputs and outputs.  One obvious example is Moore’s Law, where the 

number of transistors on a chip was long used as a measure of the rate of technological progress. 
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Another example is the cost of sending a given quantity of data through broadband or wireless 

networks.   

III.2.2. Grouping business research and development and obsolescence rates. Arguably 

the central investments from the perspective of endogenous growth are investments in research 

and development.  In 2018, total domestic business research and development (R&D) was $441 

billion.  This number does not include government or nonprofit organization R&D. These data, 

taken from the US Business Research and Development Survey, is strictly limited to “planned, 

creative work aimed at discovering new knowledge or devising new applications of available 

knowledge.” It specifically excludes indirect support to R&D, such as corporate personnel, 

routine product testing, technical services not directly part of R&D, or market research.2  

I subdivide business R&D into five groups that constitute nearly ninety percent all 

business R&D, shown on Table 1: (1) medical and chemical businesses, the bulk being biotech 

and pharmaceutical R&D, 22 % of total, (2) machinery and electronics businesses, the bulk 

being computers and semiconductors, 23 % (3) transportation machinery, the bulk being aircraft 

and automotive, 11 %, (4) Information, the bulk being software publishers, cloud computing and 

Internet,  22 %, and (5) professional, scientific and technical services, the bulk being computer 

systems design and research and development businesses, 11 %.  

Arguably one way to measure the rate of quality improvement in research and 

development can be surmised from its rate of depreciation, since research and development do 

not deteriorate as machinery does, but only becomes obsolete. If obsolescence is due to 

technological progress, then the rate of depreciation is the inverse of the rate of progress.  

In table 2, the medical and chemical businesses include pharmaceutical and medical 

manufacturing, whose research and development BEA assigns a 10 annual percent rate of 

 
2 The instructions for the survey begin with this general introduction: Research and development (R&D) comprise 
creative and systematic work undertaken in order to increase the stock of knowledge and to devise new 
applications of available knowledge. This includes a) activities aimed at acquiring new knowledge or understanding 
without specific immediate commercial applications or uses (basic research); b) activities aimed at solving a 
specific problem or meeting a specific commercial objective (applied research); and c) systematic work, drawing on 
research and practical experience and resulting in additional knowledge, which is directed to producing new 
products or processes or to improving existing products or processes  
(development). R&D includes both direct costs such as salaries of researchers as well as administrative and 
overhead costs clearly associated with the company’s R&D. https://www.census.gov/programs-
surveys/brds/information/brdshelp.html#par_textimage_2092202926 

https://www.census.gov/programs-surveys/brds/information/brdshelp.html#par_textimage_2092202926
https://www.census.gov/programs-surveys/brds/information/brdshelp.html#par_textimage_2092202926
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depreciation.  Other chemical manufacturing has more, about 16 percent.  Sixteen percent 

appears to be the modal rate of depreciation for research and development. Government health 

research and development, representing the large research investments of the National Institutes 

of Health, depreciate 9 percent annually. Thus this group has a range of depreciation rates from 9 

to 16 percent, a range of 7 percentage points. 

For machinery and electronic manufacturing R&D, the depreciation rates are higher.  

Semiconductor manufacturing R&D depreciation is 25 percent annually, computer 

manufacturing is 40 percent, communications equipment is 27 percent, and instrument 

manufacturing is 29 percent.  Thus machinery and electronic manufacturing has a range of 25 to 

40 percent, a range of 15 percentage points. 

For transportation R&D, the rates vary considerably.  For motor vehicle manufacturing, 

the rate is 31 percent, and for aerospace it is 22 percent. On the other hand, government R&D is 

lower, 7 percent for NASA R&D, and 16 percent for government transportation R&D.  Thus 

transportation R&D varies from 7 percent to 31 percent, a range of 24 percentage points. 

For information R&D, software publishing R&D is assigned a depreciation rate of 16 

percent, with computer system design also 16 percent. Own-account software, by contrast, has a 

much higher depreciation rate at 33 percent.  Own-account software is for software developed by 

a business for its own business rather than sold.  

Professional, scientific and technical businesses R&D is assigned a depreciation rate of 

16 percent.  

Looking back over all these depreciation rates, they are between 7 and 40 percent, as we 

see in Table 1.  Of these, though, the two lowest, NASA and Government health, are government 

research estimates, where it is not how one could construct an economic measure of depreciation.  

The private industry estimates are between 10 and 40 percent, still a large range. A very 

conservative estimate of the rate of depreciation for research and development would appear to 

be about 10 percent.  That would imply a ten percent rate of decline in price, if we believe R&D 

is, as the survey question suggests, for permanent increases in knowledge. Now we turn to 

specific examples of improvement of intangible productivity to see whether a ten percent rate of 

price decline could be reasonable. 
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III.3 Examples of acceleration in intangible inputs 

Here I review important cases of improvement in intangible productivity where the 

improvements are tectonic: Cost changes are so fast they are hard to capture in any indexes. Note 

that we are trying to assess, as I have argued in the theory section, the rate at which the 

intangible investment is decreasing the cost of the input.   

Let us begin by considering the measurement difficulties associated with the 

development of testing, tracing, and vaccination in the global pandemic.  The vaccines 

themselves– regardless of their intrinsic value in reducing the pandemic to an endemic disease 

that is serious but generally not deadly – are, under SNA rules, made available for the public for 

free, paid for by governments, and thus are not deflated to reflect their value to households, but 

merely their opportunity cost.  Yet it is the rapid development of our understanding of DNA and 

RNA in the wake of the Human Genome Project which has underlain our ability to understand, 

trace, and prepare defenses against the novel coronavirus.  

III.3.1 DNA sequencing. Let us consider the US firm Illumina, which pioneered second-

generation genome sequencing. By developing a technique that made sequencing more orderly 

and efficient relative to the first generation shotgun technique, Illumina was able to reduce the 

cost of sequencing a single human genome from around $1 million in 2007 to $1,000 in 2018,3 

and it has announced that its next generation will reduce the cost of such sequencing to $100 

(Regalado, 2020). This rate of progress (1,000 times in 11 years) represents a 100 percent annual 

rate of growth in productivity, compared to a 41 percent rate of growth for Moore’s Law. In the 

process, Illumina’s stock market cap rose to $25 billion by 2017. From its startup through 2017, 

it spent less than $10 billion in intangible investment. Illumina dominates the market for genome 

sequencing, reports 2018 net profit of $800 million, and currently invests about $1 billion 

annually for R&D, marketing, and other intangibles. Illumina — which earns income from 

manufacturing machines and providing the consumables needed to use them — has made 

possible big data research on genomics, with over 1 million human genomes now sequenced. At 

the 2007 price of $1 million each, that amount of data would have cost $1 trillion. Now it 

 
3 Data taken from National Human Genome Research Institute. https://www.genome.gov/about-genomics/fact-
sheets/DNA-Sequencing-Costs-Data. 

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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appears that all the earth’s nearly 8 billion human genomes could be sequenced for less than $1 

trillion.  

The steady decline in the price of represents not only the rapid depreciation and 

technological progress attributable to Illumina and its competitors, who both manufacture 

machines that perform the sequencing and the chemicals used by the machines, so that they are 

part of both machinery manufacture and chemical manufacture.  At the same time, these are 

inputs into research projects by lab scientists and doctors. A major genomics project on the 

National Cancer Institute called The Cancer Genome Atlas has created a large, public database 

capturing 20000 cancerous and noncancerous cells among 33 major cancer types. This provides 

the basis for tailoring cancer treatments to the specific type of cancer cell that is attacking a 

given patient. There are now a handful of gene based cancer treatments approved by the FDA. 

The speed with which the COVID19 virus was sequenced is testimony to this decline in 

costs. Broadly speaking, the speed with which biological and medical research can be done has 

been greatly accelerated.  

The nominal economic magnitudes of these outcomes are difficult to fully evaluate. 

Illumina’s revenue is about $3.5 billion in 2019. The industry thus far appears to be perhaps 0.02 

percent of GDP. Nevertheless, at a 100 percent rate of growth, that would add 0.02 percent to 

real growth. And, as has been mentioned, the ability to cheaply sequence the pandemic 

coronavirus has allowed health workers to follow its mutations and understand the course of the 

pandemic, whose waves of infection would otherwise be deeply puzzling. Millions of virus 

samples have been sequenced inexpensively.  

At the same time, 23andme lays claim to the world’s largest genomic database available 

for research, with over 3 million samples available for testing; 80 percent of their clients have 

volunteered their DNA for research. A revolution has occurred in the data available for genetic 

research, with almost no impact on GDP. The value of the data may well be very large and is not 

accounted for in our measures of intangibles. Finally, these advances widely impact public and 

private medical, pharmaceutical, and biotech research and development, expenditures that 

exceed $100 billion.  Moreover, rapid advances in productivity are occurring broadly in these 

areas: as noted below, there have occured in robotics, cloud computing and artificial intelligence. 
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III.3.2 DNA Manipulation with CRISPR. The proliferation of DNA data is 

complemented by inexpensive genetic manipulation via the CRISPR-Cas9 family of techniques, 

invented in 2012 by 2020 Nobel Laureates Jennifer Doudna and Emmanuelle Charpentier and 

their labs as a precise means to repair or modify individual DNA sequences (Doudna and 

Steinberg, 2017). Editing a genome has fallen in price from “tens of thousands of dollars” to $65 

since 2012, about the same rate of decline as DNA sequencing. Setting up a basic laboratory with 

this technology for genetic manipulation can cost as little as $10,000, so we are embarked on a 

new and both exciting and perilous age of genetic therapy and manipulation. The Food and Drug 

Administration has approved at least four gene therapy treatments, with over a hundred 

treatments in trial.4 Although manipulation of the heritable human genome has been declared off-

limits for the time being by the scientific community, a Chinese scientist has illegally violated 

that sanction and two children were born with modified genomes. 

The development of these technologies has generated a large number of biotech startups 

that are using CRISPR techniques to attempt to remedy genetic defects. 

III.3.2 Robot chemistry.  Burger et al (2020) describe a mobile robot chemist that can 

conduct 100 experiments a day compared to two experiments a day if performed manually by a 

scientist.  The experimental set up they described is adaptable to many different types of 

chemical experiments.  The robot was an automotive robot adapted to the purpose that cost $130 

thousand and was equipped with a Bayesian updating program that allowed it to search the 10-

dimensional experimental space autonomously and efficiently.   

The robot was used to find a superior set of catalysts for improving removal of hydrogen 

from water, potentially of value in the design of solar panels and energy storage; the new process 

amplified hydrogen yield six-fold.  In practice, the first 50 experiments showed minimal gain but 

progress thereafter was substantial with the optimal combination selected after about 400 

experiments. Thus a two hundred day experiment was reduced to 4 days. This calculation does 

not take into account the programming and laboratory set up time for a specific experiment, but 

it makes possible rapid increases in number of experiments that can be performed and the 

 
4 See FDA news releases at https://www.fda.gov/news-events/press-annoucements/fda-continues-strong-
support-innovation-development-gene-therapy-products and 
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-
patients-relapsed-or-refractory-mcl. 

https://www.fda.gov/news-events/press-annoucements/fda-continues-strong-support-innovation-development-gene-therapy-products
https://www.fda.gov/news-events/press-annoucements/fda-continues-strong-support-innovation-development-gene-therapy-products
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-patients-relapsed-or-refractory-mcl
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-patients-relapsed-or-refractory-mcl
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dimensionality of a set of tests. This is a specific output of a robotics lab but it could see wide 

usage in the development of chemical experiments and new chemicals. 

III.3.3 Cloud computing. Another key innovation is cloud computing. Cloud computing, 

which has been made practical by the ability to move data quickly over the Internet, uses farms 

of computer servers to provide computer services. This permits much more efficient utilization 

of computer processing capacity, since a lot of the server capacity at any one firm is idle much of 

the time. The declines in price from cloud computing from 2010 to 2016 reduced the prices of 

cloud computing by one-half (Byrne et al., 2021). At the same time, it also conserves on IT 

resources by concentrating the best researchers to solve the problem of creating powerful virtual 

machines and running them in a highly efficient manner. In all, this has had the impact of greatly 

reducing the costs of Internet startups, as noted by Ewens et al. (2018). They quote venture 

capitalist Mark Andreesen, “In the ’90s, if you wanted to build an Internet company, you needed 

to buy Sun servers, Cisco networking gear, Oracle databases, and EMC storage systems ... and 

those companies would charge you a ton of money even just to get up and running. The new 

startups today, they don’t buy any of that stuff. ... They’re paying somewhere between 100x and 

1000x [less] per unit of compute, per unit of storage, per unit of networking.” Ewens et al. show 

that these reductions in cost are so large that the business model of early-stage venture capital for 

Internet startups has changed dramatically: So many startups are being created that venture 

capitalists now tend to play a minor role in governance and mentorship, a role increasingly taken 

over by accelerators like YCombinator. Thus there has been a dramatic, one-time decrease in the 

cost of an internet startup.  

As already mentioned, cloud computing has been pioneered by Amazon, whose cloud 

service has provided the bulk of its profits for the last several years. Amazon Web Services was 

relaunched in 2006 to take its current form, and it was with this announcement that cloud 

computing costs became a game changer.  

Amazon’s 2020 AWS revenues were $45 billion with operating revenues of $14 billion. 

Microsoft’s Intelligent Cloud services have been, to date, AWS’s most successful competitor, 

with 2020 revenues of $48 billion, having more than doubled since 2016, and operating income 

of $18 billion. 
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However, these revenues do not show up directly in GDP, since they are intermediate 

services. Also, both of these numbers refer to global supply of these services, not just domestic.  

Software represented roughly 30 percent of R&D in 2018, when the BEA shifted 

software included in NSF’s estimate of R&D out of software investment back into R&D.  With 

some half of all business use of computation now located in the cloud.   

Since this is a more efficient use of computational services, one main effect is a slowing 

in reported business investments in servers, reducing the growth rate of GDP. From 1985 to 

1995, real growth in investment in computers and peripherals was 22 percent annually, from 

1995 to 2005, 23 percent, and from 2005 to 2015, 7 percent. The net contributions to real GDP 

growth were 0.14 percent, 0.18 percent, and 0.04 percent.  

IV.3.3 Artificial intelligence. Another example that has gotten many recent headlines is 

artificial intelligence (AI). A widely quoted blog post by Amodei and Hernandez (2018) shows 

that between early 2012 and late 2017, the rate at which AI training runs were increasing 

doubled every 3.4 months (10x annually), resulting in a 300 thousand-fold increase in the 

number of petaflops/sday5 of training behind the latest AI advance, the latest being the 2,000 

petaflops/sday used by AlphaGoZero, which trained itself to play the ancient game Go without 

reliance on knowledge of the human history of game play (Silver et al., 2018). After this training, 

AlphaGoZero was widely considered a superhuman Go player. Advances appear to be taking 

advantage of the falling cost of more and more training. An update to the blog post including 

data going back to 1959 showed that until 2012, training time increases approximated Moore’s 

Law. Thus many of the astonishing advances in AI since 2012 appear to take advantage of a 

combination of cheaper computing and greater expenditures available from intangible investment 

in AI. 

Advances in software often take the form of insightful simplification. An AI team at 

Carnegie Mellon recently completed two huge challenges in game play. Their programs aimed to 

achieve superhuman performance at what is widely considered to be the most challenging game 

of poker, Texas Hold ’Em. Poker is more difficult than Go in that players have imperfect 

information — they don’t see the cards the other players have — and so there is scope for 

 
5 A petaflops/sday is 1015 neural net operations per second for one day, or about 1020 operations.  
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bluffing and other strategies that are not available in perfect information games such as chess or 

Go. But at least in one-to-one matches the game is zero-sum, which assures the existence of a 

solution. The team’s first effort was called Libratus, published in 2017, and the program 

succeeded in beating four of the world’s best poker players one on one. The team’s second effort, 

Pluribus, was to see if they could build a program for multiplayer Texas Hold ’Em. In the end, 

Pluribus beat top players in two formats: playing multiple human players simultaneously, and 

with single human players playing against multiple versions of Pluribus (Brown and Sandholm, 

2019). Most remarkably, the algorithms that the Carnegie Mellon team used in Pluribus required 

much less training time than Libratus: While Libratus required $1 million in compute time to 

train, Pluribus required only $150 in compute time (Simonite, 2019). This was done using a new 

counterfactual routine. Thus a more complicated problem was solved with a 6,000-fold reduction 

in computer requirements in less than two years. The much lower training time means that 

anyone can afford to build a superhuman poker player for use in online poker playing.  

Advances in understanding protein folding. The “fundamental dogma” of biology is that 

DNA makes messenger RNA which creates the proteins that are the building blocks of life. 

Proteins, in turn, function (or misfunction) in folded three dimentional forms that until recently 

could only be visualized by painstaking use of X-ray crystallography or cryo-electromicroscopy, 

that could take months or years. It is estimated that only 170 thousand of the over 200 million 

proteins extant across life forms have had their 3-D structures solved.  

The rapid fall in the cost of sequencing the protein creating parts of DNA has recently 

been crowned with an amazing success of artificial intelligence.  The Google AI group Deep 

Mind has recently largely solved the mystery of protein folding for two-thirds of all simple 

protein structures; in brief, we have in principle gone from 170 thousand structures solved to 

over 100 million solved.  This does not entirely solve the protein folding challenge as proteins in 

combination have yet to meet this level of success, and some protein sequences can fold in more 

than one way. In the summer 2021, DeepMind revealed the details of its program which it made 

freely available as an open source program to scientists (Jumper et al, 2021). In an 

accompanying paper (Tunyasunuvakool et al, 2021), the program was shown to have 

successfully solved the protein structures of over 60 percent of the human proteome, doubling 
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the proportion of the structures understood; thus fifty years of progress had been accomplished in 

less than three years.   

The potential for these large advances in software, both from decreasing costs of 

hardware runs and from inspired improvements, suggests that a 33 percent average rate of 

obsolescence and a 33 percent annual rate of price decline may not be absurd, although I have 

used an estimated rate of obsolescence that is far lower.  

IV.3.4 Transportation, sensors, and batteries. Consider the self-driving car. Tesla has 

developed electric cars with some self-driving capability and sold some 378 thousand in 2019. 

Google’s self-driving car group, Waymo, has been testing self-driving cars as taxis in relatively 

easy-to-navigate suburbs of Phoenix, Arizona; taxi rides include a human minder who doesn’t 

touch pedals or steering wheel except in an emergency. Fully self-driving cars able to operate in 

difficult driving conditions are likely to be years away. Yet both these firms — and many others 

— are accumulating data and also driving down the cost of key components. When self-driving 

cars become available, they will save a tremendous amount of driving attention time: U.S. adults 

drive an hour a day, according to the American Time Use Survey 2018.  

Lidar systems — systems that use light as radar uses radio waves — are capable of much 

more accurate sensing of the environment than radar and also can operate under a wider range of 

weather conditions. The device can see in 3D, not just 2D. In 2005–2007, lidar systems from 

Velodyne cost $75,000 each, much too expensive for mass production. By 2014, that had fallen 

to $8,000 for a system from Luminar. Waymo is selling its lidar system, but not to car 

competitors, for $7,500. Luminar has announced that by 2022 systems will cost from $500 to 

$1,000 (Ohnsman, 2019; Lambert, 2020). Those prices are low enough to become valuable 

options on practically every car and greatly reduce the cost of experimenting with self-driving 

cars using lidar. In 2021, Volvo announced that Luminar’s lidar system would be standard in the 

next version of its flagship SUV, slated to be unveiled in 2022.  

Electric cars, like Tesla’s, can also be a big help in reducing carbon use. But electric cars 

require batteries. For example, the Tesla Mark 3 requires 75 kwh of battery storage capacity. 

According to the government-sponsored BNEF, the price of battery storage has fallen from 

$1,160 to $156 per kwh, from 2010 to 2019, a seven-fold improvement, for a 25 percent annual 
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rate of productivity growth.6 Recent announcements by Volkswagen suggest a further reduction 

to $100 per kwh (Ewing, 2019). To scale this 11-fold decline, the cost of 75 kwh falls from over 

$80,000 per car to $7,500.  

This decline has evidently abruptly shifted the future economics of car manufacturing 

such that the automotive industry is expected to predominantly turn to electric motive power by 

2030.  Indeed, in the largest car market, China, one-fifth of vehicles are now electric. 

IV.3.5 Electric generation. Two energy sources to reduce the amount of carbon use are 

solar and wind power. But the weather cannot be relied upon to deliver power at precisely the 

times it is demanded. That implies a role for electrical storage to time-shift electricity supply to 

meet demand. The reductions in battery costs just discussed has been such that studies show that 

in Germany, where time of day plays an important role in electricity pricing, itself relatively 

expensive, the most recent technology already has a high payoff for homeowner adoption 

(Comello and Reichelstein, 2019). In the U.S., the same is not so true at the homeowner end, but 

large electric storage facilities are being cost effective for the wholesale electrical grid. 

IV.3.6 Space commercialization. Elon Musk’s SpaceX developed the Falcon 9 rocket that 

is now being used to resupply the Space Station. The Falcon 9 and its precursor, the Falcon 1, 

cost respectively $300 million and $90 million to develop. NASA has estimated that using its 

normal procurement model, it would have paid $4 billion to develop the Falcon 9, and that might 

have been subject to cost overruns (NASA, 2011, Zapata, 2017). Thus development costs were 

10 times lower. And the price per flight fell by roughly three times. The Atlas 5 rocket that is the 

Falcon 9’s main U.S. competitor costs $110 million to $230 million per launch, whereas the 

Falcon 9 costs $61 million for a roughly comparable payload (Federal Aviation Agency, 2018).  

SpaceX and other new rocket and space startups are also working to substantially further 

lower the cost of flights by ensuring that the hardware is reusable, so that the primary cost of an 

 
6 https://about.bnef.com/blog/battery-pack-prices-fall-as-market-ramps-up-with-market-average-at-156-kwh-in-

2019/ 

https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-

average-sits-at-137-kwh/ 

 

 

https://about.bnef.com/blog/battery-pack-prices-fall-as-market-ramps-up-with-market-average-at-156-kwh-in-2019/
https://about.bnef.com/blog/battery-pack-prices-fall-as-market-ramps-up-with-market-average-at-156-kwh-in-2019/
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additional flight becomes the fuel cost. Musk has speculated that his newest rocket, the Starship, 

when fully reusable would be capable of putting 100 passengers in Mars orbit with out-of-pocket 

costs of as little as $2 million per launch, with fuel costs under $1 million. 

U.S. rocket flights support an industry whose total value is very large — $50 billion to 

$100 billion annually (FAA, 2018). These expenditures are a combination of civilian and 

military uses, with some part of them related to science and technological development.  

The remarkable declines in space exploration costs have triggered an era in which many 

for-profit companies are developing plans to commercially exploit space and countries including 

India, China, and Japan have joined a new race to the moon. The cost of the commercialization 

of space has fallen dramatically.  

Indeed, NASA plans to replace the International Space Station (ISS) with public-private 

ventures capable of commercialization.  It has helped fund Axiom, which plans to begin putting 

pieces of a private commercial space station in place in 2024, completing the station in 2027.  

Axiom estimates that it will be 100 times more cost effective than the ISS that was completed in 

1998.  That would be a 15 percent annual rate of depreciation over 29 years.  And there are three 

or four other US efforts to establish commercial low earth orbit space stations.   

Using Table 3 to look back over the rate of depreciation of some of the key technologies 

of the past ten or twenty years or more, we see numerous rates that exceed 20 percent rates of 

decline.  Of course, this is only a very incomplete survey, but I have argued that they include 

some very important examples and are part of a very rapid transformation of the fundamental 

technologies that researchers and product developers are able to deploy in the pursuit of new 

products.  

I have argued elsewhere (Nakamura, 2020) that inflation rates across products in US 

GDP have been substantially overestimated.  This appears likely to be true for intangible assets. 

These estimates suggest substantial price declines. 

IV.4 Summary 

Very large declines in prices or increases in productivity arise from innovative 

expenditures. These declines in prices are often difficult to measure. In addition, when the price 
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declines take the form of new products, the implicit price improvements and productivity gains 

are not captured in standard measurement procedures. Nordhaus (1996) has argued that large 

price changes — which he describes as tectonic — are inherently very difficult if not impossible 

for statistical agencies to capture. In the current period of rapid and broad scientific and 

technological advance, such tectonic changes have become ubiquitous.  

We have shown that the tools available to innovators, and the innovations that they 

create, are advancing at a very rapid rate, perhaps as low as 6 or 7 percent annually and perhaps 

as high as 30 percent or more.  We propose that the rates of depreciation of intellectual property 

be taken seriously as windows into the rate of progress of our innovation. A ten percent rate of 

price decline in R&D alone would increase the rate of GDP growth by over 0.2 percentage 

points. If we use the 16 percent rate which is most standard, we get close to 0.4 percentage 

points. 
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Table 1. Domestic Research and Development, 2018, Total and Selected Groupings, National 

Center for Science and Engineering Statistics (NCSES) 

     

Business 

Activity 

Industry codes Billions of 

dollars 

Percentage Depreciation 

rate spread in 

percent 

Total  441.0 100.0  

Medical and 

chemical 

32500,33910,62150 98.7 22.4 9 to 16 

Machinery and 

electronic 

33300 103.4 23.4 25 to 40 

Transportation 

machinery 

33600 49.1 11.1 7 to 31 

Information 51000 94.7 21.5 16 to 33 

Professional, 

scientific and 

tech 

54100 47.2 10.7 16 

Subtotal of 

selected 

groupings 

 393.1 89.1 7 to 40 

 

Source: National Science Foundation, NCSES, Business Research and Development: 2018, 

Table 74, pages 284-288. https://ncses.nsf.gov/pubs/nsf21312 

  

https://ncses.nsf.gov/pubs/nsf21312
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Table 2.  Depreciation Rate and Ranges 

   

Group   

 Industry Depreciation Rate. 

Percent 

Medical and 

Chemical 

 9 to 16 

 Pharmaceutical and 

Medical Mfg 

10 

 Chemical Mfg, other 16 

 Government health 9 

Machinery and 

electronic 

 25 to 40 

 Semiconductor Mfg 25 

 Computer Mfg 40 

 Communication Mfg 27 

 Instrument Mfg 29 

Transportation  7 to 31 

 Motor Vehicle Mfg 31 

 Aerospace Mfg 22 

 Govt NASA 7 

 Govt transportation 16 

Information  16 to 33 

 Software Pub 16 

 Computer System 

Design 

16 

 Own Account 

Software 

33 

Professional, 

scientific and tech 

 16 

 Research and 

Development 

16 

   

Source: US Bureau of Economic Analysis, Rates of Depreciation 
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Table 3.  Rates of technological progress 

Type Time Period Improvement 

multiple 

Rate of change, 

decline percent 

Moore’s Law: 

number of transistors 

on a chip 

1971 to 2020 25 x 10^6 29 

DNA Sequencing 2007 to 2017 1000 47 

CRISPR 2012 to 2018 150 57 

Cloud computing 2006 to 2017 2 7 

Internet start-up cost 

of experimentation 

2006 to 2007 100 to 1000  

Rocket development 2007 to 2015 10 25 

Rocket cost per flight 2007 to 2015 3 13 

AI, Libratus to 

Pluribus 

2017 to 2019 6000  

Sensor, Lidar 2007 to 2016 9 22 

LEDs, cost per lumen 1975 to 2017 16000 21 

    

Telecommunications    

Internet bytes 2008 to 2017 19 28 

Cellular bytes 2008 to 2017 200 45 

 

Source: see text   
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Appendix: BEA rates of depreciation 
Type of Asset 

Rate of 
depreciation 

Private intellectual property products  

Software /23/ 
 

Prepackaged 0.5500 

Custom 0.3300 

Own-account 0.3300 

Research and development /24/  

Pharmaceutical and medicine manufacturing 0.1000 

Chemical manufacturing, excluding pharmaceutical and medicine 0.1600 

Semiconductor and other electronic component manufacturing 0.2500 

Other computer and electronic product manufacturing  

Other computer and electronic product manufacturing, nec 0.4000 

Computers and peripheral equipment manufacturing 0.4000 

Communications equipment manufacturing 0.2700 

Navigational, measuring, electromedical, and control instrument  

manufacturing 0.2900 

Motor vehicles, bodies and trailers, and parts manufacturing 0.3100 

Aerospace products and parts manufacturing 0.2200 

Other manufacturing 0.1600 

Scientific research and development services 0.1600 

All other nonmanufacturing  

Software publishers 0.2200 

Financial and real estate services 0.1600 

Computer systems design and related services 0.3600 

All other nonmanufacturing, nec 0.1600 

Universities and colleges 0.1600 

Other nonprofit institutions 0.1600 

Entertainment, literary, and artistic originals /25/  

Theatrical movies 0.0930 

Long-lived television programs 0.1680 

Books 0.1210 

Music 0.2670 

Other 0.1090 

Source: Bureau of Economic Analysis, BEA Depreciation Rate 

 

 

Table of Government Intellectual property depreciation. 

 

Government intellectual property products /37/ 
Rate of 

Depreciation 

Software: 
 

Prepackaged 0.5500 

Custom 0.3300 

Own-account 0.3300 

Federal, National defense R&D:  

Extramural 0.1977 

Intramural 0.1600 

Federal, Nondefense R&D:  

NASA 0.0723 

Health 0.0904 

Energy 0.0935 

Transportation 0.1600 

Other 0.1600 

State and local R&D 0.1600 

 


