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A rank-dependent multidimensional deprivation index (MDI) for binary data.†

 José Espinoza-Delgado & Jacques Silber 

Abstract 

This paper first shows how to apply the Sen-Shorrocks poverty index to the analysis of multidimensional 

deprivation, when only dichotomous variables are available to assess deprivation in various domains, the 

most common case in the literature. More precisely, it introduces a rank-dependent multidimensional 

poverty index, using a counting approach. The resulting multidimensional deprivation index, or MDI in 

short, has a nice graphical representation (“PUB curve”) that turns out to be an extension of the so-called 

TIP curve of Jenkins and Lambert to the case of multiple deprivations. This graphical representation is very 

similar to the SD curve introduced by Lasso de la Vega (2010), but additionally emphasizes the third “I” of 

multidimensional deprivation: inequality. The MDI is sensitive to inequality and satisfies quite nice 

properties, but it cannot be broken down by population subgroups, when a traditional decomposition is 

used, and it does not have the property of dimensional breakdown, as the latter is usually defined in the 

literature. The paper proves, however, that there exists an alternative decomposition by population 

subgroups that can be applied to the MDI; it also derives a decomposition by deprivation domain, analogous 

to the breakdown of the Gini index by factor components. An empirical illustration based on deprivation 

data from four Central American countries (Guatemala, El Salvador, Honduras, and Nicaragua) shows the 

usefulness of the MDI. 
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1. Introduction 

To understand the threat posed by the problem of poverty, it is necessary to know the 

extent of interdependence between the various dimensions of poverty, its determinants, and the 

process through which it appears to deepen. In this context, an important question concerns the 

way poverty, and its changes, should be measured (Chakravarty, 2006). As noted by Thorbecke 

(2007, p. 4), before poverty can be measured, it has at least to be understood conceptually. In 

this regard, following the seminal contributions of Amartya Sen and his theoretical framework 

of “capabilities and functionings” (Sen, 1985, 1992, 1993, 2000), and earlier work on the 

measurement of multidimensional welfare and inequality (Kolm, 1977; Atkinson and 

Bourguignon, 1982; Maasoumi, 1986; Tsui, 1995; Maasoumi, 1999; Bourguignon, 1999), our 

conceptual understanding of poverty improved considerably. There is now quite a consensus 

on the multidimensional nature of poverty. As a result, since the pioneering works of Atkinson 

(2003), Bourguignon and Chakravarty (2003), and Tsui (2002), a number of approaches to 

analyzing and measuring multidimensional poverty and deprivation have been proposed in the 

literature (see, for example, Aaberge, Peluso, and Sigstad, 2019; Alkire and Foster, 2011; 

Bossert, Chakravarty, and D’Ambrosio, 2013; Datt, 2019; Dhongde, Li, Pattanaik, and Xu, 

2016; Duclos, Sahn, and Younger, 2008; Kakwani and Silber, 2008; Lemmi and Betti, 2006, 

2013; Pattanaik and Xu, 2018; Permanyer, 2014; Rippin, 2013, 2017). 

Of particular interest are the works of Chakravarty, Mukherjee and Renade (1998), Tsui (2002), 

and Bourguignon and Chakravarty (2003) who have defined a poverty line for each dimension 

and then combined these different poverty thresholds and the domain-specific poverty gaps 

into a multidimensional poverty measure. Atkinson (2003) has also made an important 

contribution, firstly because his paper focused on the contrast between a social welfare 

approach and a counting approach to multidimensional poverty measurement, secondly 

because it provided a very thorough discussion of how to integrate into the analysis the 

interaction between the various dimensions of poverty.   

Currently, the most popular methodology in the literature on multidimensional poverty 

analysis is the counting approach proposed by Alkire and Foster (2011), which is applied in 

the definition of the global multidimensional poverty index or global MPI (Alkire and Santos, 

2010, 2014), the best known and most influential application of this method (Duclos and 

Tiberti, 2016; Pogge and Wisor, 2016). This methodology uses a “dual cutoff method” for the 

identification of the multidimensional poor (Alkire & Foster, 2011, p. 478), an essential and 
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innovative feature (Datt, 2019), which includes the traditional union and intersection 

approaches as special cases (Atkinson, 2003). Alkire & Foster (2011, p. 479) introduced also 

a “class of multidimensional poverty measures (𝑀𝛼)” for aggregating the information on the 

poor (Alkire & Foster, 2011, p. 479), which is an extension of the FGT monetary poverty 

measures (Foster, Greer, & Thorbecke, 1984).  Alkire and Foster’s approach has, however, 

some shortcomings which may challenge, for example, the fulfillment of the overarching 

concern of the SDGs: “leaving no one behind” (Klasen and Fleurbaey, 2019, p. 1). These 

deficiencies have been mentioned, for example, in Aaberge and Brandolini (2015) and 

discussed in depth by Pattanaik and Xu (2018), as well as by Datt (2019), Duclos and Tiberti 

(2016), Espinoza-Delgado and Silber (2021), and Rippin (2017).  

A different view of multidimensional deprivation measurement was adopted by 

Chakravarty and D’Ambrosio (2006), who took a counting approach and proposed a measure 

of social exclusion, while Yalonetzky (2014), as well as Silber and Yalonetzky (2013), have 

proposed a general formulation that includes, as special cases, the approaches of Alkire and 

Foster (2011), Chakravarty and D’Ambrosio (2006), Rippin (2010) and Bossert et al. (2013). 

Another interesting contribution is that of Aaberge and Peluso (2012) and Aaberge, Peluso, 

and Sigstad (2019) who assumed that the social poverty function is directly a function of the 

proportions of individuals with 1, 2,...D deprivations (see also an extension of this approach by 

Silber and Yalonetzky, 2013) 

In the present paper, we also focus on discrete variables, in fact on dichotomous 

(binary) variables, the most common case in the literature. The key contribution of the paper is 

that it introduces a rank-dependent and an inequality sensitive multidimensional poverty index 

for multiple binary indicators, using a counting approach. The proposed index is an extension 

of the famous Sen-Shorrocks unidimensional poverty index (Shorrocks, 1995) to the 

measurement of multidimensional deprivation; we call this extension “MDI”: 

multidimensional deprivation index. The Sen-Shorrocks index has many useful properties that 

turn out to have important policy implications when applied to the multidimensional case. 

Although, in principle, the MDI cannot be broken down by population subgroups when a 

traditional decomposition is used, and it does not have the property of dimensional breakdown, 

as the latter is usually defined in the literature, we prove that there exists an alternative 

decomposition by population subgroups that can be applied to this index. We also derive a 
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decomposition of the MDI by deprivation domain that is analogous to the breakdown of the 

Gini index by factor components. 

Moreover, since the Sen-Shorrocks index can be interpreted graphically, we can 

compare the deprivation profiles of various countries or of different age groups and regions.  

Thus, we also extend the TIP curve introduced by Jenkins and Lambert (1997; 1998a; 1998b) 

to the multidimensional case. Note that the graphical representation we obtain is very similar 

to the SD curve introduced by Lasso de la Vega (2010), but presented in another context.  We 

also prove that the MDI is related to a specific case of the Aaberge et al. (2019) deprivation 

measure. Finally, an empirical illustration focusing on Central American countries (Guatemala, 

El Salvador, Honduras, and Nicaragua) shows the usefulness of the MDI. 

The paper is organized as follows. In Section 2, we summarize some previous attempts 

to measure multidimensional poverty when only binary variables are available. Section 3 

introduces what we call the multidimensional deprivation index (MDI), which is an extension 

of the approach of Shorrocks (1995) to the case of multidimensional deprivation with 

dichotomous variables.  Section 4 presents the properties of the MDI. Section 5 provides an 

empirical illustration based on data from Central American countries, while Section 6 offers 

concluding remarks.  An Online Appendix provides simple illustrations of the various 

properties of the MDI and of the similarity between the MDI and a specific case of the Aaberge 

et al. (2019) measure. 

2. On previous attempts of measuring multidimensional poverty when only binary 

variables are available 

2.1. The approach of Chakravarty and D’Ambrosio (2006) 

These authors derived axiomatically a measure of social exclusion that can be also interpreted 

as a measure of multidimensional deprivation, as shown by Jayaraj and Subramanian (2010). 

Let P refer to the total number of deprivation dimensions, 𝑃𝑖 to the number of domains in which 

individual i is deprived and n to the size of the population. The set of poor individuals will be 

defined as {𝑖  𝑃𝑖 = 𝑃} when an intersection approach is adopted, as {𝑖  𝑃𝑖 ≥ 1} when taking a 

union approach and as {𝑖  𝑃𝑖 ≥ 𝑟} when adopting the Alkire and Foster intermediate approach, 

r referring to the minimum number of domains in which an individual must be deprived to be 

considered as “overall poor”. Following Chakravarty and D’Ambrosio (2006), when taking a 



 

5 

 

union approach, one can then define an individual deprivation function 𝑑𝑖 as 𝑑𝑖 = 0 if 

individual i is not deprived in any dimension and as 𝑑𝑖 = (
𝑃𝑖

𝑃
)


 when individual i is deprived 

in 𝑃𝑖 dimensions, with  > 0. The level of deprivation in the society as a whole will then  be 

expressed as 

𝐷 = (
1

𝑛
) ∑ 𝑑𝑖 = (

1

𝑛
) ∑ (

𝑃𝑖

𝑃
)


𝑛
𝑖=1

𝑛
𝑖=1 = ∑ 𝐻𝑗 (

𝑗

𝑃
)


𝐾
𝑗=1                                                                     (1) 

where 𝐻𝑗 is the proportion of individuals deprived in exactly j dimensions. 

In the specific case where  = 1, expression (1) will be written as 

𝐷 = ∑ 𝐻𝑗 (
𝑗

𝑃
)𝐾

𝑗=1                                                                                                                          (2) 

If we adopt the intermediate approach of Alkire and Foster (2011), expression (1) will be 

written as 

𝐷 = ∑ 𝐻𝑗 (
𝑗

𝑃
)𝑃

𝑗≥𝑟 = ∑ (
𝑛𝑗

𝑛
)𝑃

𝑗≥𝑟 (
𝑗

𝑃
)                                                                                            (3) 

where 𝑛𝑗  refers to the number of individuals who have j deprivations. 

But (3) may be also written as 

𝐷 = (
∑ 𝑛𝑗

𝑃
𝑗≥𝑟

𝑛
) (

∑ 𝑗𝑛𝑗
𝑃
𝑗≥𝑟

(∑ 𝑛𝑗
𝑃
𝑗≥𝑟 )𝐾

) = 𝐻 × 𝐴                                                                                         (4) 

where H is the headcount ratio when adopting the intermediate approach of Alkire Foster with 

an overall threshold of r, while A is what Alkire and Foster (2011) call the average deprivation 

share across those classified as poor (deprived). Expression (4) refers in fact to what Alkire 

and Foster (2011, p. 479) called “the adjusted headcount ratio” ("𝑀0"). 

2.2. Additional approaches to multidimensional deprivation measurement with binary 

variables 

There have been other attempts to measure multidimensional deprivation when only binary 

variables are available. As stressed by Dhongde et al. (2016), although in the literature on 

multidimensional poverty there are quite a few studies using discrete data (e.g., Alkire and 
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Foster, 2011; Bossert et al., 2013; Lasso de la Vega, 2010), relatively few stress the specific 

case of binary data. Fusco and Dickes (2006) used binary data but did not propose or derive an 

index; they used a Rasch (1960) model.  Rippin (2010) introduced a multidimensional poverty 

index for the case of discrete data but did not specially focus on binary data. Finally Dhongde 

et al. (2016) made an interesting distinction between basic attributes and non-basic attributes, 

where each basic attribute has priority over the class of non-basic attributes. 

2.3. The original approach of Aaberge et al. (2019) 

Aaberge et al. (2019) took a dual approach to multidimensional deprivation and poverty 

measurement and defined deprivation in society via an indicator D where 

𝐷 = 𝑃 − ∑ (𝐹𝑗)𝑃−1
𝑗=0                                                                                                                (5) 

In (5), P, as before, refers to the number of possible deprivations suffered by 

individuals, and 𝐹𝑗 is defined as 𝐹𝑗 = ∑ 𝑓ℎ
𝑗
ℎ=0 , with 𝑓ℎ the relative frequency of those who have 

h deprivations. Finally,  is a non-negative and non-decreasing continuous function that 

represents the preferences of the social planner, with (0) = 0 and (1) = 1. Since the mean 

number of deprivations 𝑑̅ may be expressed as 

𝑑̅ = 𝑃 − ∑ 𝐹𝑗
𝑃−1
𝑗=0                                                                                                                      (6) 

Combining (5) and (6), we derive that 

𝐷 = 𝑑̅ + ∑ 𝐹𝑗
𝑃−1
𝑗=0 − ∑ (𝐹𝑗)𝑃−1

𝑗=0                                                                                               (7) 

However, the mean difference  of a distribution 𝐹(𝑡) may be expressed as (see, 

Yitzhaki and Schechtman, 2013, p. 16) 

 = 2 ∫ 𝐹(𝑡)[1 − 𝐹(𝑡)]𝑑𝑡                                                                                                     (8) 

Adapting (8) to the case of discrete data and to the distribution of deprivations, we 

derive that 

𝑑𝑖
= 2 ∑ 𝐹𝑗 − 2 ∑ (𝐹𝑗)

2
= 2 ⌈∑ 𝐹𝑗 − ∑ (𝐹𝑗)

2𝑃−1
𝑗=0

𝑃−1
𝑗=0 ⌉𝑃

𝑗=0
𝑃
𝑗=0                                                (9) 
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where 𝑑𝑖
 refers to the mean difference of the deprivations and we recall that 𝐹𝑃 = (𝐹𝑃)2 = 1. 

If we assume in (5) that (𝐹𝑗) = (𝐹𝑗)
2

, we conclude, using (6) and (9), that in such a 

case 

𝐷 = 𝑑̅ + (
1

2
)𝑑𝑖

                                                                                                                       (10) 

The case where (𝐹𝑗) = (𝐹𝑗)
2
 was indeed discussed by Aaberge et al. (2019).  

3. On the derivation of a rank-dependent multidimensional deprivation index when only 

binary variables are available 

3.1. On the extension of Sen’ poverty index and poverty gap profiles 

3.1.1. On Shorrocks’ (1995) extension of the Sen (1976) index 

Let 𝑛 denote the population size, 𝑥𝑖 the income of individual 𝑖, 𝑧 the poverty line, and 

𝑞 the number of people with income 𝑥𝑖 ≤ 𝑧. Sen (1976) derived axiomatically a poverty index 

that is expressed as 

𝑃𝑆𝑒𝑛 = (
1

𝑛
)

2
∑ (2𝑞 − 2𝑖 + 1) (

𝑧−𝑥𝑖

𝑧
)𝑞

𝑖=1                                                                                  (11) 

Defining 𝑥𝑖
∗ as  𝑥𝑖

∗ = 𝑀𝑖𝑛{𝑥𝑖, 𝑧}, Shorrocks (1995) extended Sen’s index and proposed 

to define a poverty index 𝑃𝑆𝑒𝑛−𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠 as 

𝑃𝑆𝑒𝑛−𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠 = (
1

𝑛
)

2
∑ (2𝑛 − 2𝑖 + 1) (

𝑧−𝑥𝑖
∗

𝑧
)𝑛

𝑖=1 = (
1

𝑛
)

2
∑ (2𝑛 − 2𝑖 + 1) (

𝑧−𝑥𝑖

𝑧
)𝑞

𝑖=1          (12) 

Shorrocks (1995) stressed that 𝑃𝑆𝑒𝑛 in (11) is not replication invariant, not a continuous 

function of individual incomes and fails to satisfy the transfer axiom, whereas the 

𝑃𝑆𝑒𝑛−𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠 index is symmetric, replication invariant, monotonic, homogeneous of degree 

zero in z (poverty line) and x (income), normalized, continuous and consistent with the transfer 

axiom. 

3.1.2. On poverty gap profiles or the so-called TIP curves 
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There has also been a graphical representation of unidimensional poverty: plot on the 

horizontal axis the cumulative relative population frequencies and on the vertical axis the 

cumulative values of the expression (
1

𝑛
)Max{(

𝑧−𝑥𝑖

𝑧
) , 0}, ranking the individual by increasing 

income; you then obtain a “poverty gap profile” (Shorrocks, 1995), which is also called TIP 

curve (Jenkins and Lambert, 1997; 1998a; 1998b). Shorrocks (1995) then proved that the Sen-

Shorrocks index is equal to twice the area below the poverty gap profile. 

3.2. Multi-dimensional deprivation in the case of dichotomous variables 

3.2.1. Deriving deprivation profiles in the multi-dimensional case 

Assume n individuals, P dimensions of well-being, and a dichotomous variable 𝑎𝑖𝑗 

equal to 1  if individual i has an achievement in domain j (e.g., if j refers to “having a good 

health”, 𝑎𝑖𝑗 = 1 if individual i is in good health, to 0 otherwise).  Let 𝑎𝑖 be defined as  

𝑎𝑖 = ∑ 𝑤𝑗  𝑎𝑖𝑗
𝑃
𝑗=1                                                                                                                       (13) 

where 𝑤𝑗 is the weight of dimension j and ∑ 𝑤𝑗 = 1.𝑃
𝑗=1   

If we define 𝑑𝑖𝑗 as 𝑑𝑖𝑗 = (1 − 𝑎𝑖𝑗), so that 𝑑𝑖𝑗 = 1 if individual i is deprived in domain 

j, to 0 otherwise, the weighted deprivation score (𝑑𝑖) for individual i will be expressed as 

𝑑𝑖 = ∑ 𝑤𝑗𝑑𝑖𝑗
𝐽
𝑗=1                                                                                                                       (14) 

The achievement score (𝑎𝑖) is a “good” so that traditional tools of distributional 

analysis (e.g., the Lorenz or Generalized Lorenz curves) can be used. But the deprivation score 

(𝑑𝑖) is a “bad” (see, Shorrocks, 1998) so that a decrease in an individual’s deprivation or in the 

inequality of the deprivation scores leads to a decrease in “aggregate deprivation”. 

The concept of poverty gap profile or TIP curve previously mentioned may be also 

applied in the context of multidimensional deprivation. Define an achievement threshold t, 

compute the normalized achievement gaps (
𝑑𝑖

∗

𝑡
) = 𝑀𝑎𝑥 {(

𝑡−𝑎𝑖

𝑡
) , 0} and then plot on the 

horizontal axis the cumulative population shares and on the vertical axis the cumulative sum 

of the expressions 𝑚𝑖 = (
1

𝑛
) ∑ (

𝑑𝑖
∗

𝑡
)𝑛

𝑖=1 =
1

𝑛
∑ (

𝑑𝑖

𝑡
)𝑞

𝑖=1 , the 𝑑𝑖
∗′

𝑠 being ranked by decreasing 
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values. One obtains a rising curve whose slope is non-decreasing and equal to 0 when we reach 

the (n - q) individuals with no deprivation (there are q individuals with at least one deprivation).  

The curve is similar to the TIP curve previously mentioned.  

Note that if 𝑡 = 1, (
𝑑𝑖

∗

𝑡
) = 𝑀𝑎𝑥 {(

1−𝑎𝑖

1
) , 0} ↔ 𝑑𝑖

∗ = 𝑀𝑎𝑥{(1 − 𝑎𝑖), 0} = 𝑀𝑎𝑥{𝑑𝑖, 0} 

 

 

- In Figure 1 OH refers to the “prevalence” (P) or incidence of deprivation [proportion 

(
𝑞

𝑛
) of individuals having some deprivation]. 

- The slope BOD equals (BD/OD)=[
(1/𝑛) ∑ 𝑑𝑖

∗𝑛
𝑖=1

1
] = [

(1/𝑛) ∑ 𝑑𝑖
𝑞
𝑖=1

1
] = (

𝑞

𝑛
) (

∑ 𝑑𝑖
𝑞
𝑖=1

𝑞
) = (

𝑞

𝑛
) 𝑑𝑞

̅̅ ̅ 

where 𝑑𝑞
̅̅ ̅ represents the average percentage of deprivations among those who have at least one 

deprivation; 𝑑𝑞
̅̅ ̅ could be labeled the “breadth” (B) or intensity of deprivation. 

- The curvature of the OA curve indicates the extent of inequality among those deprived 

in at least one dimension or the unevenness (U) or inequality of deprivation. 
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This “deprivation curve” (OAB) is actually an adaptation of the TIP curve to 

multidimensional deprivation with dichotomous variables; given that this curve takes into 

account the “prevalence”, the “unevenness” and the “breadth” of deprivation, we propose to 

call it the “PUB curve”.1 

3.2.2. Deriving a rank-dependent multidimensional deprivation index (MDI) when only 

binary variables are available 

Like Shorrocks (1995) showed for the uni-dimensional case, it is possible to show that 

twice the OABDHO area is equal to a Multidimensional Deprivation Index (MDI). 

More precisely we may write that 

𝑀𝐷𝐼 = (
1

𝑛
)

2
∑ (2𝑛 − 2𝑖 + 1) (

𝑑𝑖
∗

𝑡
) =  (

1

𝑛
)

2
∑ (2𝑛 − 2𝑖 + 1) (

𝑑𝑖

𝑡
)

𝑞
𝑖=1

𝑛
𝑖=1                                       (15) 

With a union approach (an individual is deprived even if in only one domain), 𝑡 = 1 

and then  

𝑀𝐷𝐼𝑢𝑛𝑖𝑜𝑛 = (
1

𝑛
)

2
∑ (2𝑛 − 2𝑖 + 1)𝑑𝑖

∗ = (
1

𝑛
)

2
∑ (2𝑛 − 2𝑖 + 1)𝑑𝑖

𝑞
𝑖=1

𝑛
𝑖=1                                         (16) 

Using (15), the contribution (𝐶𝑜𝑛𝑡𝑖) of individual i to the overall deprivation is 

expressed as 

𝐶𝑜𝑛𝑡𝑖 = 2 (
1

𝑛
) (

1

𝑛
) (

𝑑𝑖

𝑡
) [(

2𝑛+1

2
) − 𝑖]                                                                                     (17) 

Following Shorrocks’ (1995), it is easy to show that 

𝑀𝐷𝐼 = 𝑑̅(1 + 𝐺𝑑𝑖
) =  𝑑̅ [1 + (

𝑑𝐸𝑄−𝑑̅

𝑑̅
)] = 𝑑𝐸𝑄 = 𝑑̅ + (

1

2
)𝑑𝑖

                                                          (18) 

 
1 Lasso de la Vega (2010) also introduced deprivation curves derived from deprivation counts and called them the 

FD and the SD curves. The focus of the FD curve is on the multidimensional headcount ratio, while the SD curve 

shows on the same graph the “headcount ratio, the adjusted headcount ratio, and the average deprivation share 

according to Alkire and Foster (2007)” (p. 156). The PUB curve is very similar to the SD curve, but, in addition, 

it emphasizes the third “I” of multidimensional deprivation: inequality (“unevenness”). Furthermore, it should be 

observed that Alkire and Foster’s methodology (2007, 2011) from which the FD and SD curves of Lasso de la 

Vega (2010) are derived, pays no attention to the deprivation distribution and is hence insensitive to the extent of 

inequality among the multidimensionally poor people. 
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where 𝑑̅ and 𝐺𝑑𝑖 are respectively the average level of deprivation and the Gini index of the 

deprivation scores in the whole population (including those who have no deprivation), 𝑑𝑖
=

2𝑑̅𝐺𝑑𝑖
 is the mean difference of the deprivations and 𝑑𝐸𝑄 is the “equally distributed equivalent 

deprivation score”. 2  

We may observe that expressions (10) and (18) are identical so that the MDI is a specific 

case of the deprivation measure of Aaberge et al. (2019), that where (𝐹𝑘) = (𝐹𝑘)2. 

Rather than using the traditional Gini index 𝐺𝑑𝑖
, one can also use the generalized Gini 

index that was introduced by Donaldson and Weymark (1980) and apply it to the deprivation 

scores. The “equally distributed equivalent deprivation score” 𝑑𝐸𝑄,𝐺𝐸𝑁 in such a case uses the 

concept of “ill-fare ranking” (Donaldson and Weymark, 1980) so that 

𝑑𝐸𝑄,𝐺𝐸𝑁 = ∑ (
𝑖−(𝑖−1)

𝑛
) 𝑑𝑖

𝑛
𝑖=1    with 0 ≤  ≤ 1 and evidently 𝑑1 ≥ ⋯ ≥ 𝑑𝑞 ≥ ⋯ ≥ 0.    (19) 

In case of tied ranks, we can apply the procedure described in Deutsch and Silber (2005) in 

the case of occupational segregation.3 

3.3. Estimating the contribution of different population subgroups to the MDI 

Assume K population subgroups, each subgroup k with 𝑛𝑘 individuals. Using (15) we 

write  

𝑀𝐷𝐼 = (
1

𝑛
)

2

2 ∑ ∑ (
𝑑𝑖

𝑡
)𝑖∈𝑘

𝐾
𝑘=1 [(

2𝑛+1

2
) − 𝑖]                                                                        (20) 

i being the ranking of the individual in the whole population and not in his/her subgroup. 

 
2 It is well known that the Gini index of incomes 𝐼𝐺 , like several other income inequality indices that can be related 

to a welfare function, may be expressed as 𝐼𝐺 = (𝑦̅ − 𝑦𝐸)/𝑦̅, where 𝑦̅ refers to the average income and 𝑦𝐸  to 

Atkinson’s (1970) concept of “equally distributed equivalent level of income” applied to the Gini welfare function. 

While income is a “good”, deprivation is a “bad” so that the Gini index of the deprivation scores is defined as 

𝐺𝑑𝑖
=

(𝑑𝐸𝑄−𝑑̅)

𝑑̅
. 

3 Let us rank the deprivation scores 𝑑𝑖 by decreasing values. Call 𝑓𝑖 the population frequency of deprivation score 

𝑑𝑖 and 𝑠𝑖 the share of deprivation score 𝑑𝑖 in the total amount of deprivation in the society. Define a variable 𝑎𝑖 

as 𝑎𝑖 = (∑ 𝑓𝑗
𝑖
𝑗=1 )


− (∑ 𝑓𝑗

𝑖−1
𝑗=1 )


. Deutsch and Silber (2005) have then shown that the generalized Gini index may 

𝐼𝐺𝐺  be expressed as 𝐼𝐺𝐺=1-[∑ 𝑎𝑖 (
𝑠𝑖

𝑓𝑖
)𝑖 ]. A similar procedure may be applied to the index MDI. 
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The contribution 𝐶𝑘 of population subgroup k to multidimensional deprivation is hence 

𝐶𝑘 =  (
1

𝑛
) (

1

𝑛
) 2 ∑ (

𝑑𝑖

𝑡
)𝑖∈𝑘  [(

2𝑛+1

2
) − 𝑖]                                                                               (21) 

3.4. Making assumptions concerning the weight of the different deprivation domains  

Let j refer to a given deprivation domain with 𝑗 = 1 to 𝐽. Combining (14) and (15), we 

derive  

𝑀𝐷𝐼 = (
1

𝑛
)

2
∑ ∑

𝑤𝑗𝑑𝑖𝑗

𝑡

𝐽
𝑗=1

𝑛
𝑖=1  (2𝑛 − 2𝑖 + 1)                                                                         (22) 

so that the contribution 𝐶𝑂𝑁𝑇𝑅𝑗 of deprivation domain j to the overall deprivation becomes  

𝐶𝑂𝑁𝑇𝑅𝑗=(
1

𝑛
)

2
∑ 𝑤𝑗 (

𝑑𝑖𝑗

𝑡
)𝑛

𝑖=1  (2𝑛 − 2𝑖 + 1)                                                                         (23) 

There are quite a few possibilities as far as the choice of the weights 𝑤𝑗 of the various 

dimensions are concerned. In a recent paper Dutta et al. (2021) have however shown that 

endogenous (data driven) weights violate key properties of poverty indices, namely 

monotonicity and subgroup consisteny. They hence recommend using exogenous weights, the 

simplest case being that where all the deprivation domains have the same weight. We will make 

this assumption so that we rewrite (23) as 

𝐶𝑂𝑁𝑇𝑅𝑗=(
1

𝑛
)

2
∑ (

1

𝐽
) (

𝑑𝑖𝑗

𝑡
)𝑛

𝑖=1  (2𝑛 − 2𝑖 + 1)                                                                        (24) 

 

3.5. Comparing the approach of Chakravarty and D’Ambrosio with that of the MDI 

There is a clear parallelism between expressions (1) and (16). In (1) deprivation in society is 

defined as the arithmetic average of the individual deprivations, each individual deprivation 𝑑𝑖 

being a function of the percentage of possible deprivations individual i suffers from. When the 

parameter  is equal to 2, for example, this individual deprivation is not only higher, the higher 

the number of domains in which the individual is deprived; this individual deprivation also 

increases at an increasing rate with the number of deprivations suffered. 



 

13 

 

In expression (16), deprivation in society is a weighted average of the individual deprivations. 

Here the individual deprivatiopn 𝑑𝑖 is simply a weighted or unweighted average of the number 

of deprivation domains in which the individual is deprived. But the weight of each individual 

deprivation 𝑑𝑖 is higher, the higher the number of deprivations, hence the term “rank-dependent 

multidimensional deprivation index” that appears in the title of our paper. In expression (16), 

these weights increase in a linear way but in expression (19) the parameter  may be chosen in 

such a way that the weights increase at an increasing rate. 

 

4. Properties of the MDI  

As stressed previously, the MDI is an extension of the Sen-Shorrocks poverty index 

applied to the weighted deprivation scores 𝑑𝑖. Therefore, all the properties of the Sen-Shorrocks 

index stated by Shorrocks (1995) and mentioned previously hold also for the MDI.  

Alkire and Foster (2016) have stated that the properties of multidimensional poverty 

methodologies can be classified into three categories: invariance, subgroup and dominance 

properties. 

Invariance properties include those of symmetry, replication invariance, deprivation 

focus and poverty focus. 

4.1. Invariance properties 

Symmetry 

The reference here is to permutations of achievement vectors across individuals. As 

stressed by Shorrocks (1995), the Sen-Shorrocks poverty index has this property. 

Population replication 

Assume a “cloning” of the whole population so that the total population and the number 

of deprived individuals are now respectively equal to (𝑛) and (𝑞) with  an integer greater 

than 1.  We assume no change in the number of deprivation dimensions.  In addition, any 

deprived individual i with a deprivation score 𝑑𝑖 will be replaced by  individuals with this 
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deprivation score 𝑑𝑖 .  Here again, Shorrocks (1995) stated that such a property holds for the 

Sen-Shorrocks poverty index. 

Poverty focus  

This assumption says that an increment in the achievement of a non-deprived person, 

that is, of an individual who is not deprived in any dimension, will not affect the value of the 

multi-dimensional deprivation index (MDI). This should be clear from equations (15) and (16) 

since the MDI is only a function of the deprivation of the deprived individuals. 

Deprivation focus 

This property assumes that the multi-dimensional deprivation index (MDI) will be 

invariant to an increment in a non-deprived achievement. It is easy to check this property too, 

since if an individual i improves his/her achievement in a dimension j in which he/she was not 

deprived, the value of the dichotomous variable 𝑑𝑖𝑗 will not vary and remain equal to 0. 

4.2. Subgroup properties 

Alkire and Foster (2016) have mentioned the properties of subgroup consistency and 

subgroup decomposability. 

Subgroup decomposability 

The expression for the contribution of subgroup k to the overall deprivation (MDI) is 

given in (21). Combining (20) and (21), we conclude that 

𝑀𝐷𝐼 = ∑ 𝐶𝑘
𝐾
𝑘=1                                                                                                                      (25) 

We can therefore compute the contribution of each subgroup to the overall level of 

deprivation. Note however that 𝐶𝑘 in (22) is not identical to what would be the definition of an 

MDI limited to group k. This is so because the coefficient [(
2𝑛+1

2
) − 𝑖] associated to the 

deprivation component (
𝑑𝑖

𝑡
) of individual i depends on the rank of individual i in the whole 

population, and not in subgroup k. A subgroup decomposable deprivation index would be 

expressed as the sum of a between and a within groups deprivations.  But this is not what (21) 

is expressing. Therefore, we cannot conclude that the multidimensional deprivation index 
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(MDI) is subgroup decomposable in the traditional interpretation of such a breakdown.  This is 

also the case of the Gini index since it is well known that, as soon as there is some overlap 

between the population subgroups, the decomposition of the Gini index will include three 

components: a between and a within groups inequality but also a residual which has been 

shown to be a measure of the overlap between the different distributions (see, for example, 

Silber, 1989).   

It is however possible to take an alternative view of the breakdown of the MDI by 

population subgroups. To derive such an alternative decomposition, we borrow ideas from the 

literature on alternative decompositions of the Gini index. Deutsch and Silber (1999) have 

indicated that there is no unique way of decomposing inequality by population subgroups. They 

mention a decomposition of the Gini index, originally proposed by Lerman and Yizthaki (1991) 

and Sastry and Kelkar (1994), where the Gini index turns out to be the sum of a between and 

within groups components, but these two components are not defined in the traditional way. 

The idea is to keep the original ranking of the individuals, when computing these between and 

within group components. This idea may be also applied to the breakdown of the MDI into a 

between and a within groups components.  

The alternative between groups MDI is then defined as 

𝑀𝐷𝐼𝐵𝐸𝑇𝑊𝐸𝐸𝑁
𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 = (

1

𝑛
)

2
∑ (2𝑛 − 2𝑖 + 1) (

𝑑̅𝑖

𝑡
)𝑛

𝑖=1                                                                    (26) 

where i refers to the original rank of an individual and 𝑑̅𝑖 refers to the average deprivation level 

in the population subgroup to which individual i belongs. 

The alternative within groups component is then expressed as 

𝑀𝐷𝐼𝑊𝐼𝑇𝐻𝐼𝑁
𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 = (

1

𝑛
)

2
∑ (2𝑛 − 2𝑖 + 1) [

(𝑑𝑖−𝑑̅𝑖)

𝑡
]𝑛

𝑖=1                                                              (27) 

In Appendix A, we give a simple empirical illustration of what we called the traditional 

and the alternative decompositions of the MDI. Figure A.1 gives a graphical representation of 

the alternative decomposition. 
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In short, when using the alternative approach, it is possible to affirm that the MDI is 

decomposable by population subgroups.4 

Subgroup consistency 

Shorrocks (1995, p. 1226) stressed that, like the Sen poverty index (𝑃𝑆𝐸𝑁), the Sen-

Shorrocks poverty index (𝑃𝑆𝑒𝑛−𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠) is not subgroup consistent, but “it is an ideal measure 

of poverty in all other respects”.  Since the MDI is equivalent to the 𝑃𝑆𝑒𝑛−𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠 index, but 

applied to multidimensional deprivation, we conclude that the MDI is not subgroup consistent. 

Dimensional breakdown 

The dimensional breakdown or factor decomposability property technically requires 

that “after identification has taken place” and the poverty status of each person has been fixed, 

multidimensional poverty can be expressed as a “weighted sum of dimensional components” 

(Alkire and Foster, 2019, p. 13). This implies, following Chakravarty et al. (1998), that the 

overall poverty index is a weighted sum of the poverty measures of the various dimensions, 

these measures being only function of the distribution of the individual achievements in the 

corresponding dimension and of the threshold selected for this dimension.  

This is however not the case for MDI, since the individual level weight (2𝑛 − 2𝑖 + 1) 

we use to compute each dimensional component depends on the overall ranks of the poor, so 

any change in the joint distribution is likely to change the rank of the individuals and thus the 

value of each component. However, in the traditional decomposition of the Gini index by 

income sources, it is generally stated that each source's contribution is “the product of its own 

inequality, its share of total income, and its correlation with the rank of total income” (Lerman 

and Yitzhaki, 1985, p. 153).5 Now clearly the poverty dimensions in a multidimensional 

framework play the role of the income sources in a unidimensional analysis of inequality; 

therefore, while it cannot be said that our MDI has the property of dimensional breakdown in 

the way Chakravarty et al. (1998) and Alkire and Foster (2019) define this feature, we can at 

 
4 One may however wonder how convenient this alternative approach is for policy purposes. It has been pointed 

to us that India recently released its computations of multidimensional poverty for more than 600 districts. Our 

approach suggests that the population should be ranked at the country level and then those ranks should be used 

at all subgroup level. For a big country like India, this may indeed not very easy to implement, if census data 

rather than surveys are used. 
5 See also, Fei, Ranis and Kuo (1978) for a previous presentation of the decomposition of the Gini index by factor 

components, that is, by income sources. 
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least state that when using the MDI to measure (multidimensional) poverty, we can compute 

the contribution of each dimension to the overall value of the MDI.  

4.3. Dominance 

Alkire and Foster (2016) included here two properties. There is first the concept of 

Weak Monotonicity according to which an increase in the achievement of an individual cannot 

increase deprivation. Then, there is the notion of Weak Rearrangement that requires that a 

progressive transfer among the deprived individuals, which is the consequence of an 

“association-decreasing rearrangement”, cannot increase deprivation.  

Monotonicity 

Shorrocks (1995) stated that the index 𝑃𝑆𝑒𝑛−𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠 is monotonic.  We can therefore 

conclude that the MDI has the property of monotonicity. 

Transfers 

Let us first state that in the context of uni-dimensional poverty measurement Shorrocks 

(1995) stressed that the 𝑃𝑆𝑒𝑛−𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠 index is consistent with the transfer axiom. When 

applying this property to multidimensional deprivation analysis, we can therefore conclude that 

if, within a given deprivation domain j, a transfer takes place from a more to a less deprived 

individual, assuming no change in the ranking of the individuals, the MDI will decrease. More 

precisely, assume that originally individual i, as a whole, was more deprived than individual m 

and was deprived in domain j while individual m was not. After the “transfer” individual i 

remains more deprived than individual m, but he/she has one deprivation less, while individual 

m has one more deprivation than originally. In such a case the MDI will decrease. 

The same kind of reasoning applies when a transfer takes place between individuals 

and across domains. Assume, for example, that individual h has 𝑛ℎ deprivations and that 

individual i has 𝑛𝑖 deprivations with 𝑛ℎ > 𝑛𝑖, that individual h is deprived in domain j but not 

in domain k and individual i in domain k but not in domain j.  If, for some reason, a change 

occurs such that individual h is not deprived any more in domain j while individual i who was 

deprived in domain k becomes also deprived in domain j.  Assume, however, that, after such a 

“transfer” of deprivations, individual h has still more deprivations than individual i.  If we 
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assume that all the domains have the same weight, it is easy to observe, using (23) that the MDI 

will decrease. 

 Given that in the formulation of the MDI in (23), which refers to the case of equal 

weights, only the number of deprivations of each individual is taken into account, no matter in 

which domains these deprivations take place, the notion of “Weak Dimensional Rearrangement 

among the deprived individuals”, which was discussed by Alkire and Foster (2016), is not 

relevant. 

Rather than analyzing the impact of a transfer of deprivations between two individuals 

h and i, let us assume that these two individuals switch their deprivations.  In other words, using 

the example given previously, we would observe that in the new situation individual h is 

deprived in domain k but not in domain j and individual i in domain j but not in domain k.  

Clearly such a switch will not affect the number of deprivations of each individual and hence 

there will be no change in the value of the MDI. 

In defining the MDI in (23), which refers to the case of equal weights for the different 

deprivation domains, we made the assumption that the various deprivation domains are perfect 

substitutes. 

The case is different when examining the case of unequal weights.  It should be clear 

that even in the case where the various dimensions have different weights, a transfer of 

deprivations between two individuals of the kind described above, whether it takes place within 

a given domain or across domains, will lead to a decrease in the MDI, as long as the ranking of 

the individuals by the number of deprivations they suffer from, is not affected.  However when 

the deprivation domains have not the same weight, the switch of deprivations between two 

individuals and two domains with unequal weights, will lead either to an increase or a decrease 

in the value of the MDI, depending on the assumption made concerning the weights of domains 

j and k. 

4.4. Comparing deprivation profiles and comparing MDI indices 

Lasso de la Vega (2010) has proven the equivalence between dominance of one SD 

curve over another and the values of the corresponding multidimensional poverty measures MP 

that she defined and that were assumed to obey the following five axioms: 
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- Poverty focus: the multidimensional poverty measure MP remains unchanged if the 

poverty score of an individual defined as “overall non-poor” decreases. 

- Dimensional monotonicity: the multidimensional poverty measure MP will decrease if 

the poverty score of any individual defined as “overall poor” decreases. 

- Symmetry: No other characteristic, except the number of weighted dimensions in which 

an individual is deprived, will affect the multidimensional poverty measure MP. 

- Replication Invariance: A “cloning” of the deprivation vector of all the individuals will 

not affect the multidimensional poverty measure MP. 

- Distribution sensitivity: A decrease in poverty, due to a decrease in the poverty score 

of a poor individual, should be greater, the higher the poverty score of this individual. 

In other words, when the SD curve of a deprivation vector 𝑑′ lies above the SD curve of a 

deprivation vector d with the same or different population sizes, any poverty measure having 

the five properties listed above will rank in the same way these two deprivation vectors. 

Note that the dimension adjusted headcount ratio (the ratio of the number of weighted 

deprivations suffered by those defined as “overall deprived” and the total (maximum) number 

of weighted deprivations) introduced by Alkire and Foster (2011) violates the distribution 

sensitivity axiom. Lasso de la Vega proved however that if two deprivation vectors 

(corresponding to two different societies) can be unanimously ranked by the dimension 

adjusted headcount ratio, whatever the value of the dimension cutoff, then all poverty counting 

measures satisfying the property of distribution sensitivity will rank societies in the same way. 

Lasso de la Vega (2010) also examined the case of intersecting SD curves and showed that it 

is possible to obtain robust conclusions provided one restricts the set of identification cutoffs. 

The question is whether we can find a similar correspondence between the ranking of SD curves 

and the MDI. In fact the ordinal approach to uni-dimensional poverty analysis seems to have 

been originally introduced by Spencer and Fisher (1992).  Jenkins and Lambert (1997, p. 317) 

then introduced the concept of TIP (“Three I’s of Poverty”) curve. Subsequently, Jenkins and 

Lambert (1998b, p. 47) stated in their Theorem 3 that “given any two income distributions x 

and y and poverty lines 𝑧𝑥 and 𝑧𝑦, TIP dominance of the normalized poverty gap distribution 

𝑦 over the normalized poverty gap distribution 𝑥 is necessary and sufficient to ensure 

𝑄(𝑥 𝑘. 𝑧𝑥) ≤ 𝑄(𝑦 𝑘. 𝑧𝑦) for all 𝑘 ∈ (0,1] and for all poverty measures 𝑄 ∈ 𝐐”, the latter 

being replication invariant and increasing Schur-convex functions of the normalized gaps. 
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These deprivation profiles or TIP curves may naturally be used when adopting the 

𝑃𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠−𝑆𝑒𝑛 rather than the 𝑃𝑆𝑒𝑛 index, as shown in Shorrocks (1995).  

The MDI introduced in the present paper is an extension of the 𝑃𝑆𝑒𝑛−𝑆ℎ𝑜𝑟𝑟𝑜𝑐𝑘𝑠 index to 

the case of multidimensional deprivation. Moreover, we have mentioned previously that Lasso 

de la Vega’s SD curve is a simple adaptation of the notion of TIP curve to the multidimensional 

case, when one assumes that deprivation in a given domain is only measured via dichotomous 

variables. It seems therefore that one could apply the theorem of Jenkins and Lambert (1998b) 

stated previously, provided the deprivation profiles of the distributions we compare, do not 

intersect.6  

 

5. A simple empirical illustration 

 In this section, we present an empirical illustration of the PUB curve, the MDI and its 

decomposition by deprivation indicator, using data from four Central American countries, 

namely, Guatemala, El Salvador, Honduras, and Nicaragua (for previous work on 

multidimensional poverty in these countries, using other approaches, see Espinoza-Delgado 

and Silber, 2018, 2021). 

 To estimate multidimensional poverty in these Central American countries, we used 

data from the Guatemala National Survey of Living Conditions (2014) (GUA-ENCOVI2014), 

the El Salvador Multipurpose Household Survey (2016) (ELS-EHPM2016), the Honduras 

Multipurpose Household Survey (2013) (HON-EPHPM2013), and the Nicaragua National 

Household Survey on Living Standards Measurement (2014) (NIC-EMNV2014), which are 

nationally representative. In our exercise, we focus on individuals who are between 18 and 59 

years old, are identified as household members and completed a full interview; in other words, 

we use the individual, rather than the household, as the unit of analysis and focus on the adult 

 
6 In a recent paper, Azpitarte et al. (2020) introduced fundamental conditions whose fulfilment is both necessary 

and sufficient to ensure that poverty comparisons are robust to changes in individual poverty functions, 

dimensional weights and poverty cut-off. As stated by the authors, these conditions may be cumbersome when 

the number of variables is large. This is the reason why they also derive conditions whose fulfilment is necessary, 

but insufficient for robust first- and second-order poverty comparisons. The extension of the Sen-Shorrocks index 

to multidimensional poverty proposed in the present paper might be a simpler way of analyzing dominance. 
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members of the households, approximately 50% of the population in the countries studied 

(from a low of 47.7% in Honduras up to a maximum of 59.3% in El Salvador). 

 Regarding the empirical design of the MDI, we considered five deprivation dimensions 

(education, employment, water and sanitation, energy and electricity, and the quality of the 

dwelling) with ten indicators, which are certainly among the most significant aspects of 

individual well-being (Stiglitz et al., 2009a, 2009b). The specific indicators chosen for each of 

the five dimensions and the corresponding deprivation definitions are presented in Table 1; this 

table also shows the weighting structure that we used: equal-nested weights. 
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Table 1: Dimensions [in parenthesis the related Sustainable Development Goal (SDG)], indicators, weights, and deprivation cut-offs 

Dimensions Indicators Weights (%) Deprivation indicators: He / She is deprived if he / she… 

1. Education (Goal 4 of the SDGs) 
1.1. Schooling 

achievement 
20 has not completed lower secondary school (nine years of schooling approximately). 

2. Employment (Goal 8 of the SDGs) 2.1. Employment status 20 

is unemployed, employed without pay, or a discouraged worker or a domestic 

worker or an unpaid care worker who reported that he/she "did not have a job" but 

was available to work. 

3. Water and sanitation (Goal 6 of the 

SDGs) 

3.1. Improved water 

source 
10 

does not have access to an improved water source or has access to it, but out of the 

house and yard/plot. 

3.2. Improved sanitation 10 

only has access to an unimproved sanitation facility (a toilet or latrine without 

treatment or a toilet flushed without treatment to a river or a ravine) or to a shared 

toilet facility. 

4. Energy and electricity (Goal 7 of the 

SDGs) 

4.1. Type of cooking 

fuel 
10 

is living in a household which uses wood and/or coal and/or dung as main cooking 

fuel. 

4.2. Access to electricity 10 does not have access to electricity. 

5. Quality of dwelling (Goal 11 of the 

SDGs) 

5.1. Housing materials 5 

is living in a house with dirt floor and/or precarious roof (waste, straw, palm and 

similar, other precarious material) and/or precarious wall materials (waste, 

cardboard, tin, cane, palm, straw, other precarious material). 

5.2. People-per-bedroom 5 has to share a bedroom with two or more people. 

5.3. Housing tenure 5 is living in an illegally occupied house or in a borrowed house. 

5.4. Assets 5 
does not have access to more than one durable good of a list that includes: Radio, 

TV, Refrigerator, Motorbike, Car. 
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The PUB curve: prevalence (P), unevenness (U) and deprivation breadth (B) curve 

 We assumed that the threshold t was equal to 1, that is, we take a union approach.  

Figure 2 displays the PUB curve for Guatemala, El Salvador, Honduras, Nicaragua, and Central 

America as a whole; in this figure, the cumulative population frequencies are plotted on the X-

axis, while the cumulative values of (1 𝑛Τ ) ∑ (𝑑𝑖 1Τ )𝑛
𝑖=1  are plotted on the Y-axis. Overall, the 

left side of Figure 2 suggests that in the Central American region, the highest and lowest levels 

of multidimensional poverty are found in Guatemala and El Salvador, respectively. The PUB 

curve of Honduras dominates that of El Salvador, so that multidimensional poverty in the 

former country is always higher than in the latter, regardless of the population decile we choose. 

The cases of the Guatemalan and Nicaraguan curves are interesting.  Figure 2 shows that the 

Nicaraguan curve crosses the Guatemalan curve once from above around the 25% point on the 

horizontal axis (see the right side of the figure), suggesting that overall multidimensional 

poverty is higher in Guatemala than in Nicaragua only from this point on, i.e., the poorest of 

the poor are in Nicaragua. 

Figure 2: “PUB Curves” for Central American as a whole (CA), Guatemala (GUA), El Salvador (SAL), Honduras 

(HON), and Nicaragua (NIC). Sources: Authors’ estimates based on GUA-ENCOVI2014, ELS-EHPM2016, 

HON-EPHPM2013, and NICEMNV2014. 
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Table 2: Absolute and relative contributions of each indicator to the overall MDI. Sources: Authors’ estimates based on GUA-ENCOVI2014, ELS-EHPM2016, HON-

EPHPM2013, and NIC-EMNV2014. 

Guatemala 

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI 

Absolute 0.2645 0.0664 0.0471 0.1107 0.1444 0.0360 0.0309 0.0495 0.0103 0.0357 0.7956 

Relative 33.2% 8.3% 5.9% 13.9% 18.2% 4.5% 3.9% 6.2% 1.3% 4.5% 100.0% 

El Salvador 

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI 

Absolute 0.1736 0.0726 0.0417 0.0849 0.0204 0.0256 0.0184 0.0450 0.0180 0.0167 0.5168 

Relative 33.6% 14.0% 8.1% 16.4% 3.9% 4.9% 3.6% 8.7% 3.5% 3.2% 100.0% 

Honduras 

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI 

Absolute 0.2365 0.0644 0.0247 0.0466 0.1100 0.0242 0.0177 0.0439 0.0056 0.0233 0.5969 

Relative 39.6% 10.8% 4.1% 7.8% 18.4% 4.1% 3.0% 7.3% 0.9% 3.9% 100.0% 

Nicaragua 

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI 

Absolute 0.2247 0.0786 0.0676 0.0860 0.1051 0.0265 0.0394 0.0535 0.0157 0.0332 0.7303 

Relative 30.8% 10.8% 9.3% 11.8% 14.4% 3.6% 5.4% 7.3% 2.2% 4.5% 100.0% 

Central America as a whole 

Contrib. Education Employment Water Sanitation Energy Electricity Housing Overcrowding Housing tenure Assets MDI 

Absolute 0.2342 0.0693 0.0448 0.0876 0.1066 0.0298 0.0272 0.0481 0.0117 0.0290 0.6883 

Relative 34.0% 10.1% 6.5% 12.7% 15.5% 4.3% 3.9% 7.0% 1.7% 4.2% 100.0% 
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Table 2 illustrates the contribution of the different domains to the overall deprivation for 

the case of Guatemala, El Salvador, Honduras, and Nicaragua, as well as for Central American as 

a whole. Table 2 presents the absolute and relative contributions to the overall estimate of 

multidimensional poverty of each of the ten indicators used to measure multidimensional poverty 

in Central America; the overall estimates are shown in the last column of the table. The table 

indicates that in Central America, education is the largest contributor to multidimensional poverty; 

deprivations in this dimension accounts for one-third of the estimated MDI in each of the countries. 

6. Concluding remarks 

In this paper, we have introduced a new multidimensional deprivation index (MDI) that is 

an extension of the Sen-Shorrocks index of unidimensional poverty to the multidimensional case.  

Interestingly, it turns out that the MDI is a particular case of a measure of multidimensional 

deprivation recently introduced by Aaberge et al. (2019). In addition, by linking the MDI to the 

Sen-Shorrocks index, we have been able to derive a simple graphical representation that takes into 

account the prevalence (incidence), unevenness (inequality) and breadth (intensity) of deprivation. 

This curve is an extension of the TIP curve of Jenkins and Lambert (1997) to the multidimensional 

case and turns out to be very similar to the SD curve introduced by Lasso de la Vega (2010), 

although based on a different approach. It is therefore possible to compare the deprivation profiles 

of two or more countries, or of a country during various periods, and to derive dominance 

relationships. The MDI can be broken down by population subgroup, although it is not a subgroup 

consistent index, but “it is an ideal measure of poverty in all other respects” (Shorrocks, 1995, p. 

1226). We also showed that while the MDI does not have the property of dimensional breakdown, 

we can compute the contribution of each domain to the overall deprivation, in the same way as in 

the literature on the Gini index, one can compute the contribution of each income source to the 

Gini index or income inequality. These two decompositions, which may be considered as not 

standard, should allow policy makers to detect the population subgroups and the deprivation 

domains that require special attention. The empirical illustration of the paper, which looked at four 

Central American countries (Guatemala, El Salvador, Honduras, and Nicaragua), allowed us to 

conclude that education is the largest contributor to multidimensional deprivation, since it accounts 

for one-third of the MDI in each of the countries.  
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Appendix 

 

Appendix A: The decomposition of the MDI by population subgroups 

Assume a population of four individuals. Three of them have a certain number of deprivations and one is 

without any deprivation so that 𝑛 = 4 and 𝑞 = 3. Suppose that there are 5 domains of deprivation (𝑗 = 1 to 5). 

Individual 1 is deprived in domains 1, 2, 4, 5 so that (𝑑1 = (
4

5
)), individual 2 in domains 3 and 4 (𝑑2 = (

2

5
)) and 

individual 3 in domain 5 (𝑑3 = (
1

5
)).  Individual 4 has no deprivation.  Suppose that individuals 1 and 3 belong to 

group A and individuals 2 and 4 to group B.  Let us also assume that the threshold t is equal to 1. Finally define 𝑝𝑖  as 

that 𝑝𝑖 =
1

𝑛
𝑑𝑖 =

1

4
𝑑𝑖 .  Figure A-1 illustrates this case. 

 

Using (20) the MDI is expressed as 

MDI = (
1

16
) {[(7)(0.8)] + [(5)(0.4)] + [(3)(0.2)]} =

(5.6+2+0.6)

16
=

8.2

16
  

Using (27) we then derive that the contributions 𝐶𝐴 and 𝐶𝐵 of groups A and B are expressed as 
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𝐶𝐴 = (
1

16
) {[(7)(0.8)] + [(3)(0.2)]} =

6.2

16
  

𝐶𝐵 = (
1

16
) {[(5)(0.4)]} =

2

16
  

It is easy to observe that, as expected, the sum of these two contributions is equal to 
6.2+2

16
=

8.2

16
, which is the value of 

the MDI for the whole population. 

The graphical representation of a traditional decomposition 

In Figure A-1 the curve OABCD represents what we previously called the PUB curve. The line OE is the deprivation 

curve that would be obtained if everyone had the same and maximal level of deprivation, namely (5/5) so that the 

height ED’ is, as expected, equal to 4 (
1

4
) (

5

5
) = 1.  It is easy to check that the heights AA’, BB’, CC’ and DD are 

respectively equal to 0.2, 0.3, 0.35 and 0.35 and that the areas OAA’, AA’B’B, BB’C’C and CC’D’D are respectively 

equal to 0.025, 0.0625, 0.08125 and 0.0875. The sum of these 4 areas which corresponds to the area 

OABCDD’C’B’A’O is then equal to 0.25625. Twice this sum gives us 0.5125=(
8.2

16
), which is, as expected and shown 

previously, the value of the MDI when all the domains have the same weight. 

Given that individuals 1 and 3 belong to group A and individual 2 and 4 to group B, it is easy to check that 

the average number of deprivations in group A is 
4+2

2
= 3 and in group B it is (

2+0

2
) = 1.  We can therefore draw in 

Figure B.1 a broken curve OFD. On the section OF the height of point F corresponds to the total deprivation in group 

A which includes individuals 1 and 3 and hence it is equal to [(
1

4
) (

4

5
)] + [(

1

4
) (

1

5
)] = (

5

20
) = 0.25. Similarly, the 

difference between the height of point D and that of point F corresponds to the deprivation in group B and is hence 

expressed as [(
1

4
) (

2

5
)] + [(

1

4
) (

0

5
)] = (

2

20
) = 0.1. The height of point D is therefore 0.25+0.1=0.35. The area below 

the curve OFDD’O is therefore, computed as [(
1

2
) (0.5)(0.25)] + {(

1

2
) (0.5)[0.25 + 0.35]} = 0.0625 + 0.150 =

0.2125.  Twice this area, that is, 0.425, is hence the between groups A and B components of multidimensional 

deprivation. 

We can also compute the within groups A and B components of multidimensional deprivation. The within 

group A deprivation is evidently the area OAF while that within group B is the area FCD.  Now 

OAF=[(OAA’)+(AA’B’F)]-(OFB’) with OAA’=[(
1

2
) (0.25)(0.2)] = 0.025; AA’B’F=[(

1

2
) (0.25)(0.2 + 0.25)] =

0.05625; 𝑂𝐹𝐵′ = [(0.5)(0.5)(0.25)] = 0.0625. We therefore derive that the area OAF is equal to (0.025+0.05625)-

0.0625= 0.01875. Twice this number gives us the within group A multidimensional deprivation and it is equal to 

0.0375. 
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The within group B deprivation is given by the triangle FCD whose area is equal to [(𝐹𝐵′𝐶′𝐶 + 𝐶𝐶′𝐷′𝐷) −

𝐹𝐵′𝐷′𝐷].  But FB’C’C=(
1

2
) (0.25)(0.25 + 035)=0.075; CC’D’D = (0.25 × 0.35) = 0.0875; and FB′D′D =

(
1

2
) (0.5)(0.25 + 0.35) = 0.15. The area FCD is hence equal to (0.075+0.0875)-0.15=0.0125. Twice this area is 

therefore equal to the within group B multidimensional deprivation, that is, to 0.025. 

Let us now compute the area ABCF that corresponds to the overlap between group A and group B. We may 

write that ABCF = (AA’B’B+BB’C’C)-(AA’B’F+FB’C’C).  AA’B’B=(0.5)(0.25)(0.2 + 0.3) = 0.0625; BB′C′C =

(0.5)(0.25)(0.3 + 0.35) = 0.08125; AA′B′F = (0.5)(0.25)(0.2 + 0.25) = 0.05625; FB’C’C=(0.5)(0.25)(0.25 +

0.35) = 0.075. Therefore, ABCF = (0.0625+0.08125) - (0.05625+0.075) = 0.0125. Twice this area will be the overlap 

component of the MDI and it is equal to 0.025. 

The sum of the three components (between groups, within groups and overlap deprivation) is then equal to 

(0.425+0.0375+0.025+0.025) = 0.5125 = (
8.2

16
) = MDI. 

The graphical representation of an alternative decomposition of the MDI  

Figure A-2 gives a graphical representation of this alternative decomposition. 
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As in Figure A-1 the curve ABCD represents the actual PUB curve, and it is drawn by ranking the individuals by 

decreasing level of deprivation This ranking will be kept when drawing the deprivation curve that would be observed 

if each individual’s deprivation was the average deprivation of the group to which he/she belongs. We saw previously 

that the average deprivation in group A, which includes individuals 1 and 3, is (4+1)/2=2.5 while the average 

deprivation in group B is (2+0)/2=1. Keeping the original ranking of the individual we conclude that the height of 

point A’’ which corresponds to this deprivation of individual 1 will be (
1

4
) (

2.5

5
) = (

2.5

20
) = 0.125. To reach the second 

point (B’’) on this “alternative average deprivation curve” we add to the height of point A’ the average deprivation in 

group B (equal to 1) since individual 2 belongs to group B so that the height of point B’’ is 0.125 +[(
1

4
) (

1

5
)] = 0.125 +

0.050 = 0.175. The same idea is applied to compute the height of point C”. Starting from B” we have to add a height 

which corresponds to the average deprivation in group A since individual 3 belongs to group A and so the height of 

point C’’ is 0.175+[(
1

4
) (

2.5

5
)] = 0.175 + 0.125 = 0.3. Finally, by adding to the height of point C’’ a height 

corresponding to the average deprivation in group B (individual 4 belongs to group B) we end up with 0.3+[(
1

4
) (

1

5
)] =

0.3 + 0.05 = 0.35, which is indeed the height of point D.  Clearly, the area OA’’B’’C’’DD’O corresponds to half the 

value of the alternative between groups deprivations while the area OABCDC”B”A”O represents half the value of the 

within groups deprivation. 

It is easy to find out that the area OA’’B’’C’’DD’O is equal to {0.5 × 0.25 × 0.125} + {0.5 × 0.25 ×

(0.125 + 0.175)} + {0.5 × 0.25 × (0.175 + 0.3)} + [0.5 × 0.25 × (0.3 + 0.35)] = 0.015625 + 0.0375 + 0.059375 

+ 0.08125 = 0.19375. Twice this value (0.3875) is hence the value of the alternative between groups deprivation. 

This result can also be obtained by applying (22) to the average incomes of the group to which each individual 

belongs, giving each individual his/her original rank. We then obtain 

(
1

16
) {[(7) (

2.5

5
)] + [(5) (

1

5
)] + [(3) (

2.5

5
)] + [(1) (

1

5
)]} = (

1

80
) (17.5 + 5 + 7.5 + 1) = (

31

80
) = 0.3875 

The within groups deprivation (the area OABCDC”B”A”O) is computed as 

 {0.5 × 0.25 × (0.2 − 0.125)}+{0.5 × 0.25 × [(0.2 − 0.125) + (0.3 − 0.175)]} + {0.5 × 0.25 × [(0.3 − 0.175) +

(0.35 − 0.3)]}+{0.5 × 0.25 × [(0.35 − 0.3)]} = 0.009375 + 0.025 + 0.021875 + 0.00625 = 0.0625. Twice this area 

is hence equal to 0.125. 

This result may be obtained by applying (20) to the difference for each individual between his/her actual deprivation 

and the average deprivation of the group to which /she belongs, each individual being assigned again his/her original 

rank.  We then get 
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(
1

16
) {[(7) (

4 − 2.5

5
)] + [(5) (

2 − 1

5
)] + [(3) (

1 − 2.5

5
)] + [(1) (

0 − 1

5
)]} = (

1

80
) ((10.5 + 5) − (4.5 + 1))

=
10

80
= 0.125 

The sum of these alternative between and within group’s deprivation is hence equal to 0.3875+0.125=0.5125=
8.2

16
=

𝑀𝐷𝐼. 
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Appendix B: The MDI as a specific case of the deprivation index of Aaberge et al. (2019): a simple illustration 

Let us assume that there are 5 individuals and 10 deprivation domains. Each deprivation has the same weight. Table B-1 below indicates how many 

deprivations each individual has. 

Table B-1: A simple numerical illustration 

Number k of 

deprivations 

Number of 

individuals 

Relative 

frequency 𝒇𝒌 

of deprivations 

Cumulative 

relative 

frequency 𝑭𝒌 

of deprivations 

(𝑭𝒌)𝟐 (𝟏 − 𝑭𝒌) (𝟏 − 𝑭𝒌)𝟐 
∫(𝟏 − 𝑭𝒌) ∫(𝟏 − 𝑭𝒌)𝟐 

0 1 0.2 0.2 0.04 0.8 0.64 0.8 0.64 

1 0 0 0.2 0.04 0.8 0.64 1.6 1.28 

2 1 0.2 0.4 0.16 0.6 0.36 2.2 1.64 

3 0 0 0.4 0.16 0.6 0.36 2.8 2 

4 0 0 0.4 0.16 0.6 0.36 3.4 2.36 

5 0 0 0.4 0.16 0.6 0.36 4 2.72 

6 1 0.2 0.6 0.36 0.4 0.16 4.4 2.88 

7 1 0.2 0.8 0.64 0.2 0.04 4.6 2.92 

8 0 0 0.8 0.64 0.2 0.04 4.8 2.96 

9 0 0 0.8 0.64 0.2 0.04 5 3 

10 1 0.2 1 1 0 0   
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The Gini index 𝐺𝑐𝑖
 of the distribution of the deprivations may then be computed [see, expression (4) in 

Berrebi and Silber, 1983] as 

𝐺𝑐𝑖
= [(

4

5
) (

10−0

25
) + (

2

5
) (

7−2

25
)] = (

40+10

125
) = 0.4  

where 25 in the denominator refers to the total number of deprivations in the population and 5 is the number of 

individuals. Using (15), we conclude that 

𝑀𝐷𝐼 = 𝑐̅(1 + 𝐺𝑐𝑖
) = 5(1 + 0.4) = 7                                                                                                                 

Note that it is also possible to compute the 𝐺𝑐𝑖
 index using the following formulation of the Gini index (see, 

Yitzhaki and Schechtman, 2013, p. 15): 

𝐺𝑐𝑖
= 2{∫[1 − 𝐹(𝑘)]𝑑𝑘} − 2{∫[1 − 𝐹(𝑘)]2𝑑𝑘}                                                               (B-1) 

Using the data of Table B-1, we conclude that {∫ [1 − 𝐹(𝑘)]𝑑𝑘
9

0
} = 5 and that 

{∫ [1 − 𝐹(𝑘)]2𝑑𝑘
9

0
} = 3 

Using the data of Table B-1, we conclude that 𝐺𝑐𝑖
= 2(5 − 3) (

1

10
) = 0.4  

Since the mean difference 𝑐𝑖
 of the deprivations is expressed (see, Kendall and Stuart, 1969) as 

𝑐𝑖
= 2 𝑐̅𝐺𝑐𝑖

                                                                                                                      (B-2) 

where 𝑐̅ is the mean number of deprivations, which is here equal to (2+6+7+10)/5=5, we conclude that 𝑐𝑖
=

2 × 5 ×0.4 = 4. 

Aaberge et al. (2019) have suggested using as measure of deprivation in a society an index 𝐷(𝐹) defined 

(see, their expression (2.4)) as 

𝐷(𝐹) = 𝑟 − ∑ (𝐹𝑘)𝑟−1
𝑘=0                                                                                                  (B-3) 

where r refers to the maximum number of deprivation (in our simple illustration r = 10)  If we take a “union approach” 

the function  has to be convex.  A simple convex function would be  

(𝐹𝑘) = (𝐹𝑘)2 so that we end up with 
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𝐷(𝐹) = 𝑟 − ∑ (𝐹𝑘)2𝑟−1
𝑘=0                                                                                                    (B-4) 

Using the data of Table C-1, we easily find that ∑ (𝐹𝑘)2𝑟−1
𝑘=0 = ∑ (𝐹𝑘)2 =9

𝑘=0  3. Since r = 10, we conclude that 

𝐷(𝐹) = 10 − 3 = 7. 
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Appendix C: Decomposition of MDI by domains. 

 

Recall that in (19) MDI is expressed as 

𝑀𝐷𝐼 = (
1

𝑛
)

2
∑ ∑

𝑤𝑗𝑑𝑖𝑗

𝑡

𝐽
𝑗=1

𝑛
𝑖=1  (2𝑛 − 2𝑖 + 1)                                                                         (C-1) 

Assume to simplify equal weights so that 𝑤𝑗 = (
1

𝐽
) ∀𝑗. 

In addition take a “union approach” so that 𝑡 = 1. 

We can then express (C-1) as 

𝑀𝐷𝐼 = (
∑ ∑ 𝑑𝑖𝑗

𝑛
𝑖=1

𝐽
𝑗=1

𝑛𝐽
) ∑ (

∑ 𝑑𝑖𝑗
𝑛
𝑖=1

∑ ∑ 𝑑𝑖𝑗
𝑛
𝑖=1

𝐽
𝑗=1

) [∑
𝑑𝑖𝑗

∑ 𝑑𝑖𝑗
𝑛
𝑖=1

𝑛
𝑖=1

(2𝑛−2𝑖+1)

𝑛
]𝐽

𝑗=1                                        (C-2) 

Define now 𝑏𝑖𝑗  as 𝑏𝑖𝑗 =
𝑑𝑖𝑗

∑ 𝑑𝑖𝑗
𝑛
𝑖=

 so that 𝑏𝑖𝑗  refers to the share of individual i in the total amount of deprivation in the 

population in domain j. 

Define also 𝑠𝑗 as 𝑠𝑗 = (
∑ 𝑑𝑖𝑗

𝑛
𝑖=1

∑ ∑ 𝑑𝑖𝑗
𝑛
𝑖=1

𝐽
𝑗=1

). In other words 𝑠𝑗 represents the share of domain j in the total amount of 

deprivation in the population (all domains included). 

Finally call 𝑑̅ the ratio (
∑ ∑ 𝑑𝑖𝑗

𝑛
𝑖=1

𝐽
𝑗=1

𝑛𝐽
) so that refers to the average level of deprivation per individual and per domain 

in the population. 

We can now rewrite (C-2) as 

𝑀𝐷𝐼 = 𝑑̅ ∑ 𝑠𝑗 [∑ 𝑏𝑖𝑗 (1 + (
𝑛−2𝑖+1

𝑛
))𝑛

𝑖=1 ]𝐽
𝑗=1                                                                     (C3) 

↔ 𝑀𝐷𝐼 = {(𝑑̅) ∑ 𝑠𝑗[∑ 𝑏𝑖𝑗
𝑛
𝑖=1 ]𝐽

𝑗=1 } + 𝑑̅ ∑ 𝑠𝑗 [∑ 𝑏𝑖𝑗 (
𝑛−2𝑖+1

𝑛
)𝑛

𝑖=1 ]𝐽
𝑗=1                                  (C-4) 

It is then easy to check that 

{(𝑑̅) ∑ 𝑠𝑗[∑ 𝑏𝑖𝑗
𝑛
𝑖=1 ]𝐽

𝑗=1 } = 𝑑̅                                                                                                 (C-5) 

so that 
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𝑀𝐷𝐼 = 𝑑̅ {1 + ∑ 𝑠𝑗 [∑ 𝑏𝑖𝑗 (
𝑛−2𝑖+1

𝑛
)𝑛

𝑖=1 ]𝐽
𝑗=1 }                                                                       (C-6) 

While i is the rank of individual i in the distribution of total deprivation (all domains incldued) in the population, let 

us call 𝑖𝑗 the rank of individual i in the distribution of deprivations in domain j. It is then easy to check (see, Berrebi 

and Silber, 1987) that [∑ 𝑏𝑖𝑗 (
𝑛−2𝑖𝑗+1

𝑛
)𝑛

𝑖=1 ] represents the Gini index 𝐺𝑗 of the deprivations in domain j while 

[∑ 𝑏𝑖𝑗 (
𝑛−2𝑖+1

𝑛
)𝑛

𝑖=1 ] is called the Pseudo-Gini 𝑃𝐺𝑗of the deprivations in domain j (See, Fei et al., 1979). 

We may therefore rewrite (C-6) as 

𝑀𝐷𝐼 = 𝑑̅{1 + ∑ 𝑠𝑗[𝑃𝐺𝑗]𝐽
𝑗=1 } = 𝑑̅ {1 + ∑ 𝑠𝑗 [𝐺𝑗 (

𝑃𝐺𝑗

𝐺𝑗
)]𝐽

𝑗=1 }=𝑑̅{1 + ∑ 𝑠𝑗[𝐺𝑗(𝐺𝐶𝑗)]𝐽
𝑗=1 }     (C-7) 

where 𝐺𝐶𝑗 = (
𝑃𝐺𝑗

𝐺𝑗
) is called the Gini correlation coefficient (see, Yitzhaki and Schechtman, 2013). 

In other words a domain j of deprivation contributes more to the MDI  

- the higher the share 𝑠𝑗 of domain j in the total amount of deprivation in the population (all domains included). 

- the higher the Gini index 𝐺𝑗 of the deprivations in domain j 

- the higher the Gini correlation coefficient 𝐺𝐶𝑗 for domain j (the higher the correlation between the distribution 

of the deprivations in domain j and the distributioon of the total deprivations, all domains included, in the 

population, this correlation being measured not via the Pearson correlation coefficient but via the Gini 

correlation coefficient). 

 

 

Working with mean differences 

Let us first recall that [∑ 𝑏𝑖𝑗 (
𝑛−2𝑖𝑗+1

𝑛
)𝑛

𝑖=1 ] represents the Gini index 𝐺𝑗 of the deprivations in domain j while 

[∑ 𝑏𝑖𝑗 (
𝑛−2𝑖+1

𝑛
)𝑛

𝑖=1 ] is called the Pseudo-Gini 𝑃𝐺𝑗of the deprivations in domain j. 

Moreover, as already mentioned by Kendall and Stuart (XX), we know that the Gini index is equal to half the ratio of 

the mean difference over the corresponding mean. We may therefore write that 

𝐺𝑗 = (
1

2
) (

𝑗

(∑ 𝑑𝑖𝑗
𝑛
𝑖=1 )/𝑛

)                                                                                                           (C-12) 

where 𝑗 is the mean difference of the deprivations 𝑑𝑖𝑗  (within the deprivation domain j). 
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We can similarly define a “Pseudo Mean Difference” and write that 

𝑃𝐺𝑗 = (
1

2
) (

𝑃𝑗

(∑ 𝑑𝑖𝑗
𝑛
𝑖=1 )/𝑛

)                                                                                                        (C-13) 

where 𝑃𝑗 refers to the mean difference of the deprivations 𝑑𝑖𝑗  (within the deprivation domain j). 

Combining (D-11), (D-12) and (D-13) we derive that 

𝑀𝐷𝐼 = {(
1

𝑛𝐽
) ∑ [∑ 𝑑𝑖𝑗

𝑛
𝑖=1 ]𝐽

𝑗=1 } + {𝑑̅[∑ 𝑠𝑗𝑃𝐺𝑗
𝐽
𝑗=1 ]}  

={(
1

𝐽
) ∑ [

∑ 𝑑𝑖𝑗
𝑛
𝑖=1

𝑛
]𝐽

𝑗=1 } + {(
1

𝐽
) (

∑ ∑ 𝑑𝑖𝑗
𝑛
𝑖=1

𝐽
𝑗=1

𝑛
) [∑ (

(∑ 𝑑𝑖𝑗)/𝑛𝑛
𝑖=1

(∑ ∑ 𝑑𝑖𝑗)/𝑛𝑛
𝑖=1

𝐽
𝑗=1

) (
1

2
) (

𝑃𝑗

(∑ 𝑑𝑖𝑗
𝑛
𝑖=1 )/𝑛

)𝐽
𝑗= ]} 

=𝑑̅ + (
1

2
) (

1

𝐽
) ∑ 𝑃𝑗 = 𝑑̅  + (

1

2
) (

1

𝐽
) ∑ 𝑗 (

𝑃𝑗

𝑗
) = 𝑑̅  +  (

1

2
) (

1

𝐽
) ∑ 𝑗𝐺𝐶𝑗

𝐽
𝑗=1

𝐽
𝑗=1

𝐽
𝑗=1             (C-14) 


