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Abstract

Nowcasting refers to the “forecast” of the current (“now”) state of the econ-
omy. This is necessary as key economic variables are often published with
a significant delay of over a month. The nowcasting literature has arisen to
address the need to have fast, reliable estimates of delayed economic indica-
tors. The path signature is a mathematical object which captures geometric
properties of sequential data; it naturally handles missing data from mixed
frequency and/or irregular sampling – issues often encountered when merg-
ing multiple data sources – by embedding the observed data in continuous
time. Calculating path signatures and using them as features in models have
achieved state-of-the-art results in other fields such as finance, medicine, and
cyber security. We look at the nowcasting problem by applying regression
on signatures, a simple linear model on these nonlinear objects that we show
subsumes the popular Kalman filter. We quantify the performance via a
simulation exercise and application to US GDP growth, where in the latter
we demonstrate no loss of performance compared with the dynamic factor
model. By embedding discrete information in continuous time, this approach
allows greater flexibility for future applications on data with complex sam-
pling patterns.

Disclaimer: The views expressed are those of the authors and may not reflect the views of

the Office for National Statistics or the wider UK Government.
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1 Introduction

Households, businesses, and policymakers need up-to-date information to
make decisions. However, information is often incomplete or delayed because
collection and compilation of the data underlying key economic indicators
takes time. For example, UK monthly GDP is published with approximately
a 6-week lag. Incomplete or delayed information hinders the ability for rapid
responses and decision making. Decision-makers want to be able to query the
UK GDP now, they do not want to wait 6 weeks. As a result, there has been
an increasing demand for reliable early predictions using any and all available
information. These early predictions or estimates are called nowcasts. They
provide a prediction/inference of the current state of the economy.

The economic literature on nowcasting has grown dramatically in the past
20 years (e.g. Stock and Watson, 2002; Giannone et al., 2006; Bok et al.,
2018). This literature has focused on three main issues. First, when incorpo-
rating a large number of predictors into a model, how one imposes structure
on the model to reduce dimension. Second, how one incorporates data into
a model when there are missing observations or when there are mixed or
irregular sampling frequencies (Kapetanios et al., 2018; Ghysels and Mar-
cellino, 2018). Third, how one allows for time-varying parameters or for
non-linearities.

1.1 Dimension reduction

In most nowcasting exercises, a large number of variables are used to predict
a single target. For example, the NY Federal Reserve nowcasting model uses
more than 160 variables to nowcast US GDP (FRBNY, 2016). The leading
approaches in the macroeconomic nowcasting literature are dynamic factor
models (DFM), Bayesian vector auto-regressions (BVAR), and penalised es-
timation methods like the LASSO.1

Dynamic factor models were introduced into economics by Geweke (1977)
and are reviewed in Stock and Watson (2017); Bai and Ng (2008). These
models are based on the idea that most of the time series variation in a
large set of economic variables is driven by the dynamics of a small number
of unobserved common factors. These factors can be extracted from the
complete set of economic variables using singular value decomposition of the
data matrix. Then, the dynamics of the factors are analysed using standard

1Recent macroeconomic papers have also investigated the use of machine learning meth-
ods including random forests and artificial neural networks (Richardson et al., 2021). Fur-
thermore, outside of economics, there is a large literature in nowcasting across a range of
disciplines including statistics, meteorology, computer science, engineering, etc.
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time series methods such as vector autoregression. There has been rapid
development of DFM methods in applied macroeconomic analysis, and they
have been used extensively in economic forecasting and nowcasting, see e.g.,
Giannone et al. (2006), Doz et al. (2006), and Bok et al. (2018).

Bayesian vector auto-regressions, developed in macroeconomics in Litter-
man (1979); Sims (1980), and reviewed in Karlsson (2013), impose restric-
tions on high-dimensional models by specifying prior beliefs on the parameter
space and then using Bayesian methods to estimate the posterior distribu-
tion of the parameters. The posterior distribution then is used to nowcast
the economic variables of interest.

Penalised estimation methods impose restrictions on high dimensional
models by including a penalty term in the estimation objective function.
For example, the LASSO estimator, popularised in statistics by Tibshirani
(1996), adds a penalty based on the sum of the absolute values of the param-
eters (an L1 penalty). This shrinks parameter estimates towards zero and,
due to the non-smooth objective, selects a subset of variables with nonzero
coefficients. The ridge estimator (Hoerl and Kennard, 1970) instead adds
a penalty based on the sum of the squares of the parameters (L2 penalty).
This also has the effect of shrinking parameter estimates towards zero. Many
other forms of the penalty function are possible. The penalty terms allow
researchers to include very large numbers of predictors in nowcasting models
and, in many settings, result in nowcasts that have lower mean squared error
than unpenalised alternatives. These methods have been used in nowcasting
in Babii et al. (2021), for example.

1.2 Missing observations and mixed frequency or ir-
regular sampling

Due to varying publication lags, it is often the case that some variables in
a dataset have missing values for recent time periods. This issue is often
referred to as the “ragged-edge” problem. In many other cases, one would
like to predict low frequency variables (monthly or quarterly GDP) using
high frequency ones (daily, weekly, and monthly prices or expenditure).

Several solutions to this problem have been developed in the macroecono-
metrics literature. One option is to use the classic discrete time Kalman filter
(e.g. Kalman, 1960; Stock and Watson, 2002; Bańbura and Modugno, 2014).
This method assumes a linear time series structure and imputes missing val-
ues using the Kalman filter.

A second option is the bridge method. This approach consists of a two-
equation system, linking the high frequency predictor xht to the low frequency
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target ylt
ylt = β0 + λyt−1 + β(L)xlt + εt.

The lag polynomial β(L) of order p is defined as β(L) =
∑p

i=0 βi+1L
i

with Lyt = yt−1 where p is the number of equidistant high-frequency periods
one can divide the low-frequency period; i.e. p = 3 in the case of monthly
(high-frequency) data are used to nowcast quarterly (low-frequency) target
variable.

Given the high-frequency predictors xht , the user has to aggregate the in-
dicator forecast xlt = ω(L1/p)xht before proceeding to step estimate ylt. Note
that as written above, the aggregation can be applied to complete quar-
ters only. Which means that, the practitioner has to wait until the three
monthly observations of the indicator corresponding to the calendar quarter
are available before applying the aggregator function. This can be resolved
by forecasting the predictor for any missing months. In the literature, typi-
cally very simple univariate models are chosen to predict the high-frequency
indicator. For example, a simple AR forecast equation for xht such as

x̂ht = α0 + α(L1/p)xht−1/p + εht ,

can be be used in aggregation to obtain xlt which is then used in Equation
(1.2). Although simple to use, the bridge model relies on estimated values
derived from the higher frequency variable to nowcast the lower frequency
target variable. Hence, forecast accuracy of missing values directly affects
nowcast accuracy.

A third approach that directly relates high frequency indicators to a low
frequency target is the mixed-data sampling (MIDAS) model (Ghysels et al.,
2004). MIDAS accommodates data sampled at different frequencies by in-
corporating higher frequency variables using distributed lag terms with frac-
tional lags. For example, in a quarterly model in which each time period is
composed of three months, a monthly variable can be incorporated as a vari-
able that is lagged by one third or two thirds of a model period. Ghysels and
Marcellino (2018) describe the method as a “tightly parameterised, reduced
form regression that involve processes sampled at different frequencies”. The
MIDAS equation for ylt is given by:

ylt = β0 + λyt−r + β1B(L1/p, θ)xht + εt.

The term B(L1/p, θ) is a lag polynomial

B(L1/p, θ) =
K∑
k=0

b(k, θ)Lk/p
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In the MIDAS literature, typically functional lag polynomials are chosen for
B(L1/p, θ) to avoid parameter proliferation for long high-frequency lags K.
A popular functional form of the polynomial is the exponential Almon lag

b(k, θ) =
exp(θ1k + θ2k

2)∑k
j=1 exp(θ1j + θ2j2)

with parameters θ = [θ1, θ2]. For a given θ, the lag function provides a
parsimonious way to consider a large number of K high-frequency lags of the
indicators.

To-date, most empirical studies on nowcasting deals with regular missing
data patterns. This is because nowcasting typically utilises official published
data which are released on a fairly regular schedule. However, in recent
years there has been an increase in the use of alternative data sources e.g.
web-scraped data and scanner data. These alternative sources can have com-
plicated missingness patterns as a results of collection methods. Therefore,
there is a need for a nowcasting methodology to be able to handle these cases.

1.3 Time varying parameters and nonlinearities

Classic time series methods such as the autoregressive integrated moving
average (ARIMA) model assume that the dynamics of a low dimensional
variable, after suitable differencing to ensure stationarity, can be modelled
with a linear model with autoregressive and moving average components.
After differencing, the data are stationary, the model is linear, and the pa-
rameters of the model are assumed to be constant. In nowcasting settings,
all three of these assumptions can be too restrictive.

State space models offer one approach to relax these restrictions (Durbin
and Koopman, 2012). These models are highly flexible and can allow for
non-stationarity, non-linearity, and time-varying parameters. Many papers,
including Hamilton (1994), Nielsen and Berg (2014), Carter and Kohn (1994),
Kim et al. (1999), Kim (1994), also allow for time-varying parameters.

1.4 Summary of contributions

Our contribution is in introducing signature methods to the nowcasting litera-
ture. The path signature is a mathematical object to describe time-series-like
data, arising from the theory of rough path analysis. They have properties
that are desirable in applications. We shall refer to the family of methods
that utilises the path signature for prediction tasks as signature methods.
Signature methods naturally allow for missing data due to mixed frequency
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and irregular sampling by modelling time series processes in continuous time.
They have been used to great success in a range of applications including Chi-
nese handwriting recognition (Graham, 2013), sepsis detection (Morrill et al.,
2020), and malware detection (Cochrane et al., 2021).

When the process is in continuous time but the measurements of the
process are discrete or irregular, one can still construct the signature of the
underlying process and use the signature in a nowcasting model. In addi-
tion, as in state space models, signatures can be constructed and used in
non-stationary settings and in settings where the underlying dynamics are
nonlinear. Given the success of utilising signatures in other areas, we bench-
mark the performance against the well known, aforementioned nowcasting
methods.

Signatures on their own do not solve the problem of dimension reduction.
However, signatures can be combined with dimension reduction methods. As
a second contribution, we thus show how to combine the flexible dynamics
of signatures with standard dimension reduction techniques like those used
in DFMs. We develop a signature DFM model (SDFM) in which low dimen-
sional factors are extracted from high dimensional data using the singular
value decomposition and the dynamics of the factors are analysed using sig-
nature methods.

The rest of the paper is organised as follows: Section 2 gives some back-
ground on continuous time state-space models and path signature; Section 3
proves how the Kalman filter can be equivalently written as a linear regression
on the signature space; Section 4 shows how to use regression on signature
to nowcast; Section 5 shows how it is possible to replicate the performance
of the Kalman filter by using regression on signature in a controlled envi-
ronment; 6 applies the signature model to nowcast US GDP growth; finally
Section 7 concludes.

2 Background

In this section, we outline some of the underlying theory we will rely on to
build the signature method that we introduce.

2.1 Discrete time state-space models

We begin by introducing the notation that we use throughout the paper and
recapping the classic discrete time Kalman filter (see also Bertsekas (2012)).
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Suppose that we have a hidden process Y ∈ Rk that we cannot directly
measure but would like to infer with the observed data X ∈ Rd. At each
time t, the Kalman filter splits into two stages. The first is the prediction
stage: given our previous estimate of Yt−1, how can we model its evolution
to Yt? The second is the correction stage: as more measurements are made,
and we obtain information Xt, how can we use this to update the estimate
of Yt?

To be precise, let us assume that the ground truth is given by

Yt = AYt−1 +Wt, Xt = CYt + Vt,

with the starting distribution Y0 ∼ N(µ0|0, P0|0). Here W , V are white noise
processes in Rk and Rd respectively, with Wt ∼ N(0,Γ) and Vt ∼ N(0,Σ)
for all t (all values independent). Note A and Γ are in Rk×k, and C ∈ Rd×k,
Σ ∈ Rd×d. We assume all parameters are known.

For the prediction stage, we know that Yt|Xt ≡ Yt|(X1, X2, ..., Xt) is nor-
mal (and similarly so is Yt|Xt−1), and let us write Yt|Xs ∼ N(µt|s, Pt|s). Using
the dynamics of Y and X, we can obtain the prediction equations

µt|t−1 ≡ E[Yt|Xt−1]

= Aµt−1|t−1,

Pt|t−1 ≡ var(Yt|Xt−1)

= APt−1|t−1A
⊤ + Γ.

Before computing the Kalman correction step, let us define the “innova-
tion” process η and its variance S

ηt ≡ Xt − E[Xt|Xt−1] = Xt − Cµt|t−1,

St ≡ var(ηt|Xt−1) = var(Xt|Xt−1) = CPt|t−1C
⊤ + Σ.

The innovation process η tells us what information we “learn” from Xt. For
the correction, we compute the new mean estimate to be

µt|t ≡ E[Yt|Xt] = E[Yt|ηt,Xt−1]

= µt|t−1 +Ktηt,

where K is the “Kalman gain” process, which allows us to optimally incor-
porate new information,

Kt = Pt|t−1C
⊤S−1

t = (S−1
t CPt|t−1)

⊤.

Finally the variance correction equation is given by

Pt|t ≡ var(Yt|Xt,Xt−1)

= (I −KtC)Pt|t−1.
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This method also generalises to the case where the parameters are time-
varying.

2.2 Continuous time state-space models

In order to treat variable timings of observations, it is natural to embed
the discrete-time model in a continuous-time framework. The most natural
continuous-time extension of the Kalman state-space model is the Kalman–
Bucy filter2. As in the discrete time setting, we assume a hidden process Y
and observed process X. We assume a ground truth of the form

dYt = (FtYt + ft)dt+ σtdVt

dXt = (HtYt + ht)dt+ dWt,

where F ∈ Rd×d, σ ∈ Rd×p, f ∈ Rd, H ∈ Rm×d, h ∈ Rm, so Y is d-
dimensional, X ism-dimensional. The processes V,W are Brownian motions,
and W is independent of Y .

The filter, which estimates the current state of the underlying process Y ,
is then given by the pair of equations

dŶt = (FtŶt + ft)dt+RtH
⊤
t (dXt − (HtŶt + ht)dt)

dRt

dt
= σtσ

⊤
t + FtRt +RtF

⊤
t −RtH

⊤
t HtRt.

With these equations, we have the result that, given our observations up to
time t, Yt has conditional distribution N (Ŷt, Rt). We can see that Rt is the
solution to a Riccati equation, and in particular is deterministic (so does not
depend on the observations X).

2.3 Paths and signatures

The path signature (Chen, 1958) is a property of continuous paths. It is
motivated from the theory of rough path analysis, and have been shown to be
effective in prediction tasks. In this section, we introduce the terminology and
definitions related to paths and signatures. For a more detailed introduction
see Chevyrev and Kormilitzin (2016) and Lyons et al. (2007).

A path in Rd is defined as X : [a, b] → Rd, where each component is a
1-D path X(k) : [a, b] → R.

2For a detailed study of these equations, and derivation of the filter, see for example
Bain and Crisan (2008) (whose notation we broadly follow) or Cohen and Elliott (2015,
Chapter 22).
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Let X : [a, b] → Rd be a d-dimensional path and let

S1(Xk)a,t ≡
∫
a<s<t

dXk
s = Xk

t −Xk
a ,

noting that the superscript denotes the number of iterated integrals we take,
and the subscript indicates the limits of the outermost integral. Next let us
define the double iterated integral as

S2(XkX l)a,t ≡
∫ t

a

S1(Xk)a,tdX
l
s =

∫ t

a

∫ s

a

dXk
r dX

l
s.

Similarly, we define all the higher order index terms as iterated integrals,
then the signature of the path is the ordered infinite collection of all such
terms

S(X)a,b ≡
(
1, S1(X1)a,b, . . . , S

1(Xd)a,b, S
2(X1X1)a,b, S

2(X1X2)a,b, . . .
)
.

The path signature captures geometric information, such as the order of
events. The first level signature terms give the increment in each dimension
between the beginning and end of the path. The second level terms are linked
to the area bound by the path, in particular, cross terms represent the Lévy
area. The Lévy area captures which dimensions are changing first.

There is a Stone–Wierstrass theorem which gives universality of this ap-
proximating class. Any continuous function on paths can be approximated
arbitrarily well through a linear combination of signature terms.

As signature terms are iterated path integrals, they also inherit their
invariance properties, that is, the terms are invariant to translation of the
path and the reparameterisation in time.

The signatures describe the continuous path rather than the discrete
points. As a result, choice of interpolation can matter as different paths
are generated. But this also means that if sufficiently similar paths are gen-
erated, then we would not expect the signature to be greatly affected by the
frequency of observation/sampling.

There are well-developed theories to support applications of signatures.
Chen’s identity gives us a way to compute the signature of a concatenated
path as a algebraic product of individual paths, and this can be utilised for
efficient computation of signatures for moving windows. The log-signature
has a formal algebraic definition which reduces dimension without losing
information. Where there are many random paths, the expected signature
gives us a way to explore the space of paths.
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2.4 Practical signature computation

In the previous section, we saw how the signature is a natural object/basis
to consider for paths and time-series data in particular.

When working with real data, we only observe variables at discrete in-
tervals. As a result, we need to interpret new data releases as coming from
some underlying continuous time series and exploit connections to model
the target variable. Using signatures as features is a natural way for mar-
ket participants to make sense of data releases continuously in real-time and
sidesteps data issues discussed below.

A common feature/issue for datasets is that different variables are col-
lected at different frequencies. Some things are easy/cheap to measure and
we may get daily updates, for example electricity and oil prices. Other data
may be more expensive or difficult to measure, for example unemployment
rate or personal income. Another issue is that there may be missing data.
Survey data may not be collecting the same information on the same subject
across time. Finally, the data collection can be very irregular and sporadic.
By interpreting the time series as a path object, these problems can be re-
solved; provided the dimension of the path (number of variables) is fixed, the
number of signatures at each level is fixed too.

Signatures can be efficiently computed through with the iisignature

package in Python. Due to the invariance to re-parameterisation property of
signatures mentioned in Section 2.3, it is common to manually add time as
one of the input variables (as is typical in prediction problems).

There are two different ways to consider incoming data. We can either
consider an expanding window, appending the new information to our existing
data, or we can take a a rolling window : fixing a window size and discarding
the older data.

In the case of the expanding window, we note that certain terms in the
signature may be increasing. For example, the first level signatures terms are
just the differences between the start and the end of the path, and therefore
those corresponding to time would increase as more observations become
available.

A classic result in rough paths is the factorial decay of the signature terms
Lyons et al. (2007). Let Y : [0, T ] → V be a path with finite one-variation.
Then, for each k ≥ 1,∫

0<u1<···<uk<T

dYu1 ⊗ · · · ⊗ dYuk
≤

||Y ||k1,[0,T ]

k!
.

Therefore, as we increase the depth of signature terms, since the terms
are decreasing factorially, we still obtain a reasonable approximation by trun-
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cating the signature at a sufficiently high level (certain lower level terms may
be increasing in the expanding window case).

However, it is important to note there is also an explosion in the number of
terms. For a d dimension object if we truncate at k levels then there are

∑
k d

k

number of signature terms. So whilst signatures can universally approximate
any path objects, we need to be wary of the exponentially increasing number
of terms, which would increase model complexity, and may result in over-
parameterisation.

It can be useful to add additional information by providing e.g. time
since the last observation or counting the number of measurements observed
in certain variables. These have been observed to boost performance in
practice (Morrill et al., 2021).

In the last few years, signatures have been utilised in a range of appli-
cations with great success, these include Chinese handwriting recognition
(Graham, 2013), malware detection (Cochrane et al., 2021), and time series
generation (Ni et al., 2021).

3 Signatures generalize (linear) Kalman fil-

ters

Our claim is that the filter can be equivalently written as a linear regression
problem on the signature space. In other words, we can express Ŷ as a linear
combination of the iterated integrals of the extended observation process
(t,Xt).

3.1 Derivation

To do this semi-explicitly, we write

At ≡ Ft −RtH
⊤
t Ht

ξt ≡
∫ t

0

(fs −RsH
⊤
s hs)ds+

∫ t

0

RsH
⊤
s dXs,

which gives us the simplified expression

dŶt = AtŶtdt+ dξt. (1)

A naive approximation of this equation would be to take

Ŷt ≈ Ŷ0 + A0Ŷ0t+ ξt.
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However, this is only appropriate for small values of t, and assumes that A
does not vary much through time. The goal of signature methods is to give
a better approximation for this system, which can be used effectively for a
wider range of time horizons.

Denote the iterated integrals of A and ξ by

An
t =

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

(
At1At2 · · ·Atn

)
dtn · · · dt1

Ξn
t =

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

(
At1At2 · · ·Atnξtn

)
dtn · · · dt1,

with the conventions A0 = Id (the identity matrix) and Ξ0
t = ξt. Note that

these are both formally solutions of the recurrence relationQn
t =

∫ t

0
AsQ

n−1
s ds

with different values for Q0 (and in different dimensions). We note that
the nth iterated integral is super-polynomially small, and in particular the
infinite sums

∑
n≥0An

t and
∑

n≥0 Ξ
n
t are both well defined.

Writing Ŷ in integral form, we have

Ŷt = Ŷ0 +

∫ t

0

AsŶsds+ ξt.

The value of Ŷ can then be expressed through the series solution

Ŷt =
∑
n≥0

(
An

t Ŷ0 + Ξn
t

)
.

Given the recurrence relation mentioned above, this is easily seen to be the
(unique) solution to the integral equation. This shows that Ŷt is a (linear)
function of its initial value Ŷ0 and the iterated integral processes An and Ξn.
The expansion given is very closely related to the Picard series approximation
of the stochastic differential equation defining Ŷ .

It remains to show that A and Ξ can be expressed in terms of the (joint)
signature of (t,Xt). As A is a continuous deterministic function of time, we
know that (over any finite time horizon) it can be approximated arbitrarily
well by a polynomial (by the Stone–Weierstrass theorem). As the signature
of time is simply the sequence S(t) = (1, t, t2/2, ..., tn/n!, ...), we see that A
can be written as (matrix valued) a linear function of the signature of t.

The process ξ is slightly more delicate, as it depends on both time and
the observations X. The first term

∫ t

0
(fs − RsH

⊤
s hs)ds is deterministic, so

again has a polynomial expansion in terms of the signature of t. Considering
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the second term
∫ t

0
RsH

⊤
s dXs, we see that if H is continuous3, RsH

⊤
s has an

expansion in terms of the signature of time, so
∫ t

0
RsH

⊤
s dXs has an expansion

in terms of the signature of (t,Xt), with the special form where the only
integral with respect to X is the outermost one.

As both A and ξ have expansions in terms of the signatures of t and
(t,X) respectively, it follows that their iterated integrals A and Ξ also have
expansions of this type. For our purposes the explicit values of this expansion
are not of particular interest (and do not have a simple algebraic form), but
the definition of A immediately shows that if A can be written as a polynomial
in time, then so can An for each n. Similarly for Ξn, but now this will involve
iterated integrals with a single X integral included. (The absence of iterated
integrals with more than oneX integral is equivalent to the linear dependence
of the filter X̂ on the observations X.)

Example 1. Consider the situation where d = p = m = 1, f = h = 0,
F = −1, H = 1 and σ =

√
3. Then our filter equations simplify to

dŶt = −Ŷtdt+Rt(dXt − Ŷtdt)

dRt

dt
= 3− 2Rt −R2

t .

For simplicity, assume the initial variance is at the steady state R0 = Rt = 1,
so we have

dŶt = −2Ŷtdt+ dXt

which can be solved as

Ŷt = e−2tŶ0 +

∫ t

0

e−2(t−s)dXs.

The signature expansion of Ŷ can also be computed, as was done for (1),
with the identity At = −2 and ξt = Xt, to give4

An
t = (−2)n

tn

n!
= (−2)nSn(t · · · t)

Ξn
t = (−2)nSn+1(xtt · · · t),

3If H is not continuous, then we need to use the fact that polynomials in time are dense
in the L2([0, t]) space, which is the appropriate space to consider given we have an outer
integral with respect to the process X. In this case we will still have a polynomial approx-
imation pn(s) ≈ RsH

⊤
s , such that the integral

∫ t

0
pn(s)dXs →

∫ t

0
RsH

⊤
s dXs converges in

a mean-square sense as n → ∞.
4Here we write Sn(...) for the n-fold iterated integral with respect to the sequence

indicated (which must be of length n, with the innermost integral listed first); i.e.

S3(xtt) =
∫ t

0

∫ t1
0

∫ t2
0

1 dXt3 dt2 dt1. In this example all signature terms are defined for
[0, t] so we drop the subscript for convenience.
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and hence

Ŷt =
∑
n

(
An

t Ŷ0 + Ξn
t

)
= Ŷ0 +

∑
n≥1

(
[(−2)nŶ0]S

n(t · · · t) + [(−2)n−1]Sn(xtt · · · t)
)

= Ŷ0

(
1− 2t+ 2t2 − 8

6
t3 +

16

24
t4 + ...

)
+ Yt − 2

∫ t

0

Xs ds+ 4

∫ t

0

∫ t1

0

Xs ds dt1 − 8

∫ t

0

∫ t1

0

∫ t2

0

Xs ds dt1 dt2 + ...

In particular, if t is small, the first few terms of this series provide a good
approximation for the value of Ŷt, in terms of a linear function of these
signature terms. Note that the naive approximation Ŷt ≈ Ŷ0 − 2Ŷ0t + Xt

appears as the first terms in this expansion.
However, we should remember that the simple structure we obtain is due

to the assumptions we have made on our state-space model (in particular, the
absence of signature terms of the form Sn(t...txt...t) is due to the assumption
the variance is in its steady state).

The key advantage of this approach, even while restricting our attention
to the Kalman–Bucy state-space model, is that we now have an expansion
which is valid, in theory for all t, and in practice for all t not too large. This
simplifies dramatically the problem of working with data at mixed frequen-
cies, as we can evaluate the filter state at any t, in terms of the corresponding
signature terms, rather than having to compute (as is done, for example, in
a MIDAS model) a version of the filter which depends on the timing of ob-
servations.

3.2 Nonlinear examples

A further advantage of the use of signature methods is that it allows us to
easily incorporate nonlinearity in our state-space models. This can easily
occur if our observations do not have a linear impact on the underlying sys-
tem. For example, if our observations X were replaced in the above example
by X̄ = log(X). Then, by the chain rule (which holds for Stratonovich
integrals), we know

dXt = eX̄tdX̄t.

An immediate consequence of this is that the Kalman–Bucy filter can be
written in terms of the modified observation process X̄, and by very similar
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arguments to before, this would have an expression in terms of the signature,
but with terms involving multiple integrals with respect to X̄.

This suggests that using the signature expansion is robust to the specifi-
cation of the observation time series. That is, the traditional issues around
the choice of transformations (whether to use a series, its logarithm, differ-
ences, etc...) are less significant, as they can be absorbed into the signature
expansion.

4 Nowcasting via signature regression

Given the above representation of the Kalman filter mean in terms of the
signature, we gain an easy approach to nowcasting, using regression on the
signatures of our observations.

Let Y lf
t be the (low-frequency) variable we want to nowcast. We write

Xhf
k,t, k = 1, . . . , K, for the (high-frequency) observed explanatory variables at

t. Motivated by the approximation of the Kalman filter in terms of signatures,
we assume that

Y lf
t =

K∑
k=1

(αk + βkY
lf
t−)ψk,t + ϵt, (2)

where

• Y lf
t− is the most recent (at t) prior observation of the low frequency

variable,

• ϵt is a mean-zero error term,

• ψk,t is a sequence (for each value of t) of signature terms, including iter-
ated integrals of t and the different components of the observed process
Xhf , calculated over the interval from from the previous observation of
Y to the present,

• αk, βk are two sequences of real regression coefficients.

As outlined above, in order to replicate the Kalman filter, we would have
βk = 0 whenever ψk corresponds to a signature term depending on X, and
would only include signature terms which depend either purely on t, or on
a single component of X appearing once in the iterated integral. Both of
these restrictions can be relaxed, leading to a richer class of models than
considered by the (linear) Kalman filter.
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4.1 Regularisation

As the number of signature terms can still be numerous, the regression frame-
work allows for the well-known regularisation techniques to be applied. In
particular, we utilise L1-regularisation (Lasso) which also performs feature
selection.

The fitted parameters β̂k are obtained by Lasso regression, i.e. minimising

min
β0,βk

T∑
t=0

(
Y lf
t − β0 −

p∑
t=1

Y lf
t−i −

K∑
k=1

βkψk,t

)2

s.t.
K∑
k=1

|βk| ≤ c, (3)

where c is a free parameter that determines the degree of regularisation.

5 Simulation Exercise

In this section we show that it is possible to almost replicate the performance
of the Kalman filter by using regression on signatures for a simulated exper-
iment. For this, we look at the case when the underlying state is a Markov
process in continuous time, and suppose that we observe the data at irregular
intervals.

Practically, let us take an AR(1) process

Yt = AYt−1 + σW
(2)
t (4)

Xt = BYt + γW
(1)
t , (5)

where W
(1)
t ,W

(2)
t are independent, standard Gaussian random variables.

After simulating the complete time series, we then downsample (ran-
domly) the data to some approximate proportion and apply our signature
method on the reduced series. As the downsampling is random, this means
that the gaps between observations will be random too.

5.1 Experiment set-up

Let us look at a 1-dimensional problem, and suppose that we want to nowcast
the final value of the hidden state YT using only the initial value of the hidden
state Y0 along with the observations made at irregular times X0, . . . XT .

Take A = 0.99, B = 1, σ = 0.01, and γ = 0.1. Let us simulate 400
trajectories of the above path for T = 1000 timesteps, and downsample
randomly to only keep 20% of the data.

Suppose that we know the parameter values are known, that is, we have
perfect information and do not need to learn any parameters from data.
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Then, as this problem is linear, the Kalman filter should give the optimal
solution.

For regression on signatures, we proceed as discussed in Section 4. Here
we do not know any parameter values. From the observation values, we
compute truncated signature terms, and scale it with the initial value of the
hidden variable. We use 80% of the generated trajectories as training data
(to calibrate the regression model) and the rest as the test/evaluation set.

5.2 Results

The application of the filter on a particular example, along with the YT value
predicted by the signature method is given in Figure 1.

0 200 400 600 800 1000
time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

va
lu

e

KF predictions
sig predictions
true values

Figure 1: Predicted trajectory of the Kalman filter, along with the predicted
final YT value of the signature.

For the Kalman filter, the mean of the residual is µkf = 0.003 and variance
is σ2

kf = 0.044. The signature method has a mean of µsig = −0.014 and larger
variance at σ2

sig = 0.129. The plot of the residuals of each method can be
seen in Figure 2.

Plotting the residuals of the Kalman filter against that of the signature
method, we obtain Figure 3. The line of best fit (minimal mean square error)
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(a) Histogram of the residuals of the
Kalman filter.
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(b) Histogram of the residuals of the
signature method.

Figure 2: Residuals for simulation data

has gradient 0.96, and intercept -0.01. Therefore we see good alignment of
the errors of the signature against the ideal filter given full information. In
this plot, we see that the residuals are up to double the size for the signa-
tures method compared with the Kalman filter, but that is not unexpected,
given the Kalman filter has the exact parameters provided and is therefore
theoretically optimal.

Overall, this experiment demonstrates that regression on signatures pro-
vides a competitive method to infer parameters from data.
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Figure 3: Residuals of the Kalman filter against the signature method.

6 Nowcasting US GDP growth

In this section we apply the signature methods to nowcast the quarter on
quarter GDP growth for the United States. The statistical imprecision of
early GDP estimates and the delay of its publication by a month since the end
of reference quarter, has posed a challenge to economists and practitioners to
monitor the state of the economy in real-time. In order to detect economic
fluctuations in a more timely manner, economists, market participants, and
media have scrutinized more frequent data series and built indicators (such as
the composite leading indicator by OECD and the set of real-time indicators
released by ONS). Unlike professional forecasts, that combined a number
of models and judgement, Giannone et al. (2008) proposed a single formal
model to utilise a variety of data to monitor economic conditions in real-time.
The model proposed characterises current economic activity by condensing
the information into a few factors that summarise economic conditions and
it would be referred to here as the “New York Fed Staff Nowcast model”.

In this application, we look at the nowcasting problem using a dynamic
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factor model with the same variables underlying the New York Fed Staff
Nowcast model in Bok et al. (2018), and compare this result with regression
on signatures as described in Section 4.

6.1 Data

In order to nowcast the real GDP growth, we use 32 of the 36 variables
proposed in Bok et al. (2018), since “ISM nonmanufactory: NMI compos-
ite index”, “ISM mfg: Prices index”, “ISM mfg.: PMI composite index”
and “ISM mfg.: Employment index” are not publicly available. The dataset
includes a selection of monthly variables that covers housing, income, manu-
facturing, labor, surveys, trade, and consumption. As in Bok et al. (2018), we
apply the same factor loading. All the variables are affected by the “Global”
factor, a “soft” block is included to model correlations in survey data; “real”
and “labour” to model real and labour market variables respectively. For
more details please refer to Table 5.1 of Bok et al. (2018).

6.2 The New York Fed Staff and the Signature Now-
cast models

The model proposed by Giannone et al. (2008) and used in Bok et al. (2018)
is a dynamic factor model (DFM). The DFM is a natural candidate to tackle
the task at hand; the problem is cast into a state-space model form and hence
the inference can be done using Kalman filtering techniques. From the dis-
cussion in Section 3, we have shown how linear regression on signature space
generalises a Kalman filter, making the DFM model a suitable candidate to
compare nowcast performance against the methodology introduced in this
paper.

A dynamic factor model assumes that the target variable yt is driven by
r unobservable factors (f1,t, . . . , fr,t), while the features that are specific to
individual series, such as measurement errors are captured by (e1,t, . . . , et).
The state-space model is summarized in the following equations:

yt = λ1f1,t + · · ·+ λrfr,t + et

fj,t = ajfj,t−1 + uj,t
(6)

which relates the data yt to the r latent common factors f1,t, . . . , fr,t. The
factors and the idiosyncratic components are unobserved states. A model
of this kind was first introduced by Stock and Watson (1989) to extract a
single common factor (r = 1) from a small set of monthly indicators, which
were then extended by others (e.g. Mariano and Murasawa, 2003; Aruoba
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et al., 2009). However, large datasets like the one we use pose the issue
of dealing with “large n (the number of predictors), small T (the length of
time-series)”. Bok et al. (2018) address this issue in two steps. First, they
computed the estimations iteratively using the Kalman smoother and the
EM algorithm, which is initialised by computing principal components. Sec-
ond, given the estimated parameters, they update the common factors using
a Kalman Smoother. Maximum likelihood estimation is obtained by com-
puting these two steps until convergence.

We compare this model with the linear regression on the signature space
as presented in Section 4. We use the same factors as computed by the DFM
model, compute signatures terms up to order 3 and estimate the parameter
of a linear regression model by OLS. Theoretically, the two models should
be comparable, since we have shown in the previous sections how we can
replicate the performance of the Kalman filter by using a regression on the
signature. In the next section we replicate the exercise in Bok et al. (2018)
and compare it with our nowcast from signature.

6.3 Results

Figure 4a reports the evolution of the nowcasts of annualised QoQ real GDP
growth in quarter four of 2016 obtained with DFM and signature model. An-
nualised growth rates show the value that would be registered if the quarter-
on-previous quarter rate of change were maintained for a full year. A new
nowcast has been produced every time a new release of one or more of the
32 variables is available. The lines in the figure are the progression of the
nowcasts throughout the reference quarter (1st of October to 31st of Decem-
ber) and one month after the reference quarter, until the BEA publishes
the release. The official estimate for 2016Q4 (red circle) was published on
January the 27th. To consider the revision error, we have also included the
latest estimate for 2016Q4, which was published the 30th of July 2020 (green
square).

We can produce a nowcast very close to the official release with both
models as early as mid-December; this evidence is in favour of our claim that
regression in the signature space is comparable with Kalman filter used in
DFM. However, comparing the two models’ nowcasts, it seems that the DFM
is more stable than the signature model since its estimates fluctuate less then
the alternative model and display a smaller error in Figure 4b. It must be
mentioned that to check the robustness of this result we need to compare
the performance of the two models over a evaluation period longer than one
quarter (as done here). This exercise will be presented in future versions of
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this paper. From this picture we can also judge the marginal gain from using
more timely information: it seems that after mid-December, the updates in
predictors do not impact the nowcasts much. However it appears that the
signature method picks up some signal in the final two sets of data releases
as the estimate increases, which aligns more with the later releases of the
GDP growth, compared with the DFM.

7 Conclusion

To summarise, the path signature, arising from theory, captures relevant
geometric properties of sequential data. Signature methods naturally allow
for missing data from mixed frequency and irregular sampling, issues often
encountered in nowcasting, by embedding the observed data in continuous
time.

In this paper we demonstrated the application of regression on signa-
tures to nowcasting. First, we introduced the theory of the path signatures
and illustrated how they are computed. We then showed that regression in
the signature space subsumes the linear Kalman filter, which is commonly
used in the nowcasting literature. Focused on practicality, we detailed the
methodology of how to estimate nowcasts via signature regressions.

Second, we showed how it is possible to almost replicate the performance
of the Kalman filter (when the parameters are known) by using regression on
signatures (applied only on the data) for a simulated experiment. We then
applied the model proposed in this paper to a well-known empirical exercise:
nowcast GDP growth for US. We have shown that the results obtained are
comparable with the ones published in Bok et al. (2018).

Although the application demonstrated the performance of signature meth-
ods to nowcast regularly sampled data, it is a very flexible tool that can
address many of the issues encountered when dealing with micro-data or
very irregularly sampled dataset; applications that could be shown in future
extensions of this work.
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(a) Results for DFM and signatures to nowcast 2016 Q4 GDP growth.
Note: the “Early estimate” is released in January 27th, 2016, while the
“Latest” refers to the released in July 30th, 2020,
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Figure 4: Results on the US GDP growth application.
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