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Abstract 

The UK government has committed to increase R&D support for clean technologies in an effort to meet 

its net-zero target by 2050. The opportunity cost of such programs crucially depends on the value of 

knowledge spillovers that accrue from clean relative to other (emerging) technologies. Using patent 

information to measure the value of direct and indirect knowledge spillovers, we derive estimates for 

the expected economic returns of subsidising a particular technology field. Our method allows 

comparing fields by the returns a hypothetical additional subsidy would have generated within the UK 

or globally. Clean technologies are top-ranked in terms of within-UK returns, with Tidal and Offshore 

Wind showing particularly high returns. In terms of global returns, emerging technologies such as 

Wireless, as well as Electrical Engineering outperform Clean by a small margin. We also find that cross-

border knowledge spillovers are important for all technology fields, with global return rates over ten 

times larger than within-UK ones. In sum, our results suggest that the opportunity cost of R&D support 

programs for clean innovation in the UK is low at worst.   
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1. Introduction

The UK government is committed to reducing greenhouse gas emissions to net-zero by 2050. 
Increasing government support for R&D in clean technology is an essential part of the strategy 
to achieve this target, whilst maintaining a commitment to increase overall R&D spending to 
2.4% of GDP. Understanding how public R&D can induce innovation-led growth, including 
relative differences between technological fields and sectors, is important when making 
decisions on how to allocate finite public resources.   

In this paper, we inform this debate by comparing the returns that subsidies are expected to 
create across technological fields taking into account both the direct return to innovators as 
well as knowledge spillovers. Knowledge spillovers are a principal source of market failure for 
innovation (Arrow, 1962). They happen when the knowledge embedded in one innovation has 
a value to future innovations. As such, spillovers create value that is not reaped by the 
innovator, leading to underinvestment in R&D from a societal perspective. R&D subsidies 
address this market failure by increasing private incentives to innovate. If total returns differ 
between technological fields, re-allocating public resources to the fields with the highest 
returns can increase the effectiveness of R&D subsidies. We will examine how such returns 
differ between various clean technologies and compare clean technologies as a whole with 
other emerging technologies. 

To measure innovation by UK inventors, we rely on the EPO PATSTAT database, the most 
comprehensive collection of patent documents available. We define the total economic value 
of innovation as the sum of its private value – i.e. the increase in profits due to the innovation 
– and its spillover value – i.e. the economic value it creates to society by inducing knowledge
spillovers. To estimate private value, we use a predictive model of a firm’s stock-market 
reaction when obtaining a patent right. This model allows us to extrapolate the stock-returns-
based measure – which is only available for listed firms – to the population of patented 
inventions. To track knowledge spillovers, we use the fact that inventors are required to 
disclose which prior patents are relevant to their invention. To measure the value of knowledge 
spillovers, we assume that a portion of an invention’s value derives from spillovers induced by 
the inventions it cites. 

These metrics for private and spillover value allow us to rank fields in terms of how much 
value they create to society on average. However, to calculate returns to subsidies, we need 
estimates of how costly it is to innovate in a field – i.e. how many innovations a certain subsidy 
amount can ‘buy’. In addition, we need to account for the fact that subsidies mainly induce 
innovations that would not have been pursued based on their expected private returns only. We 
take this into account using an economic model of the innovation process that allows us to 
construct an indicator for the expected rate of return to a subsidy in a specific technological 
field. 

We implement our methodology on the population of innovations originating in the UK 
between 2005 and 2014. This window is the latest we can reliably study, given the available 
data. Further analysis shows that the rates of returns we estimate are reasonably stable over 
time. Therefore, the results are likely indicative of the returns that can be expected from current 
support policies. 
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Our results indicate that clean innovation fields in the UK rank highly in expected returns to 
subsidy, realising about 50% higher returns than broad fields such as Electrical Engineering, 
Instruments, Mechanical Engineering and Chemistry . We also benchmark clean technology 
sub-fields against ‘trending’ fields such as Artificial Intelligence and Biotechnology. Results 
show Tidal Stream and Offshore Wind at the top of this ranking. CCUS, Smart Systems and 
Building fabric also score above average, while Biomass & Bioenergy and Solar score below 
average. 

Based on our analysis, we expect that a clean technology support programme of £10M granted 
between 2005 and 2014 would have created economic spillover returns of £330K to the UK 
economy in that same period; i.e. a return of 3.3%. The same programme would have created 
returns of £3.7M to the global economy through cross-border knowledge spillovers; i.e. a return 
of 37%. It is important to note that these returns pertain to the expected value of projects that 
would not have been carried out in the absence of the support programme. The estimated 
average return rate for UK clean R&D that would be performed regardless of any subsidy is 
about 75%.  

The 3.3% within-UK return rate to Clean R&D support is a lower bound of the actual economic 
return rate for two reasons. First, knowledge spillovers take time to realise. The spillovers from 
innovations towards the end of our time window likely realise only after 2014. When analysing 
innovations between 2005 and 2009, thus allowing each innovation at least 5 years to realise 
spillovers, within-UK return rates are about 6% and global return rates are about 70%. This 
analysis still excludes spillovers realised post-2014. A further analysis suggests that 
innovations induce a significant amount of spillovers for at least 2 decades after their 
introduction. Of all spillovers that innovations from 1990 induced between 1990-2014, 15% 
are induced by 1995, 53% by 2000, 71% by 2005 and 86% by 2010, with yearly spillovers 
rates showing no decline towards the end of the sample period. Second, our model makes the 
conservative assumption that no additional market failures are corrected by the subsidies. 
Credit constraints due to imperfect capital markets, risk/uncertainty aversion and short-termism 
make it likely that firms underinvest in R&D projects with positive expected private returns. 
Subsidies can mitigate these frictions and therefore have higher returns than the ones we 
estimate. 

We also examine differences in R&D subsidy returns by technology readiness level (TRL). 
Technologies with relatively low TRL are in the infant stages of their development, and 
therefore require a great deal of development before their economic benefits come into fruition. 
Being more generic, they could also provide spillovers to a larger number of follow-on 
innovations, and are therefore particularly underfunded by private firms. Investing in such 
technologies is risky for firms because their eventual success is uncertain and because it is 
unclear whether the innovator will be able to appropriate their ensuing value. Subsidy 
programmes can increase payoffs to these risky investments and therefore help induce firm 
investments in low-TRL technologies. If these technologies are indeed superior in terms of 
spillover value, supporting R&D in low-TRL technologies could be a particularly promising 
policy. 

To assess the TRL of a technology, we use the detailed technological classes assigned to patents 
by the patent office. This classification is designed to help patent examiners establish the 
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inventive step of an invention. Prior work has shown that inventions that combine classes that 
no patent before has combined are indeed more novel and display higher variation in 
technological success. We use this measure to gauge whether an invention was of low TRL.  

The results show that clean technologies, on average, display lower TRL than most other fields. 
When breaking down the returns to subsidy by high or low TRL, clean technology produces 
the highest returns for both types, but the difference is larger for low-TRL-inventions. Returns 
to subsidy are about 30% higher for low-TRL-inventions. 

In sum, our results suggest that shifting more public resources to clean technology R&D does 
not go at the expense of lower economic returns – as captured by private and spillover value of 
innovations within the UK. However, we also identify substantial heterogeneity across clean 
technology classes with Tidal Stream, Offshore Wind, CCUS, Smart Systems and Building 
Fabric technologies showing particularly high levels of return. We also find heterogeneity at 
the national and international level, with considerably larger spillover effects when cross-
border innovation effects are included. It could also be particularly fruitful to combine a 
strategy to support clean technologies with a focus on low TRL clean technologies to maximise 
economic returns. Such considerations would need to be balanced to meet technology 
requirements for Net Zero by 2050, which may also require mid/high TRL innovations to be 
scaled and commercialised in parallel. 

Despite an extensive body of literature documenting the importance of knowledge spillovers, 
we know relatively little about the variation in knowledge spillovers between detailed 
technology groups. Much of the literature is instead focused on specific types of technologies, 
on average effects for the economy as a whole or on distinctions between basic research and 
more close to market research (Griliches, 1992, 1986).  

Methodologically, most work has used patent data to come to grips with the importance of 
knowledge spillovers (Scherer, 1965; Griliches, 1991; Jaffe, 1986). One common approach is 
to estimate the cross-elasticity of R&D activity between firms that are close in technological 
or geographic space (Bernstein & Nadiri, 1989;  Jaffe et al., 1993; Bloom et al., 2013). The 
idea behind this approach is that, in the presence of knowledge spillovers, pursuing innovation 
becomes more profitable when related firms do so as well. This results in a positive relationship 
between similar firms’ R&D activities, which is used to gauge the importance of knowledge 
spillovers. In an attempt to more closely observe spillover links between innovation projects, 
patent citations have become an important methodological tool to measure knowledge 
spillovers (Trajtenberg, 1990; Alcacer & Gittelman, 2006). The assumption behind this 
approach is that when a patented invention makes reference to previous inventions, it has 
‘received’ knowledge spillovers from these inventions. Most commonly, the number of patent 
citations received from future inventions is used as a measure of the magnitude of spillovers 
induced.  

While methods that estimate cross-elasticities using innovation production functions of firms 
offer plausible estimates of the value of spillovers, they lack the flexibility to be applied on the 
granular level relevant to industrial policy. Specifically, they need to control for various 
economic factors – for instance demand – that also result in a positive correlation between 
similar firms’ R&D activities. This requires specific datasets and settings which makes the 
approach too inflexible to be applied at the level of detail necessary for the task set out in this 
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report.  Forward citation counts address this issue and give a detailed account of the knowledge 
linkages between innovations. However, they do not give an objective value measure 
comparable across technological categories because they do not take into account the value of 
the citing patents. The approach we use addresses both issues by providing a monetary value 
of knowledge spillovers on the level of a patented innovation. In addition, our methodology 
accounts for private value differences between innovations when estimating knowledge 
spillovers. Moreover, it takes into account indirect spillovers arising from innovations at a more 
distant location in the citation network.  

A few prior studies have used patent data and forward citations to investigate knowledge 
spillovers by Clean technologies. Dechezlepretre et al (2014) documented that Clean 
innovations tend to produce vastly more knowledge spillovers than comparable “dirty” ones. 
This work has been refined in Guillard et al (2021), Rydge et al (2018), Martin et al (2020a) 
and Martin et al (2020b) who show that there are significant differences in spillover rates 
between different clean technology types. Moreover, the ranking of these rates varies between 
different countries. Finally, the ranking of technologies based on return rates changes when 
only considering the spillovers that realise within a country (national spillovers) as compared 
to considering all spillovers induced (global spillovers). 

2. Background 

The UK government is committed to reducing UK greenhouse gas emissions to net-zero by 
2050. For that purpose, the government is designing a Net Zero Innovation Portfolio. There 
has been extensive research into which clean technologies are most promising and effective in 
reducing both UK and global emissions. As societal benefits from emission-reducing 
innovations are only partially captured in the profits of innovators, R&D support is a crucial 
component to achieve socially optimal levels of clean technology development.  

However, government support for innovation is also an important driver of economic growth. 
Indeed, long-run economic growth comes from advances in technology and practices that 
derive from research and innovation. Public resources used to support clean technology 
development are, by definition, not used to subsidise other areas of innovative activity. If these 
other areas produce higher economic returns to subsidy, there is a clear trade-off between 
achieving net zero and stimulating economic growth. If clean areas are in fact competitive 
regarding the returns to subsidy, such a trade-off does not exist. This would open up the 
potential to design a Net Zero Innovation Portfolio that is both GHG mitigating and growth-
enhancing. 

To a large extent, public investment in innovative activities is motivated by the existence of 
knowledge spillovers. Knowledge is a public good in the sense that once an insight has been 
achieved it can be easily copied or it will generate new insights by others who have not 
participated in the financing of the R&D that brought about the original insight. Because of 
such knowledge spillovers it is widely accepted that market forces alone will underprovide 
investment in R&D and government support for R&D will be most effectively spent if it is 
targeted towards those types of innovation that generate more knowledge spillovers than 
others. For instance, we expect higher knowledge spillovers when it comes to more basic 
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research and in technology areas that are more general purpose in nature. Oftentimes, 
government support for R&D is structured accordingly. 

As knowledge spillovers are the key argument to justify government support for innovation, it 
is crucial to understand the value of knowledge spillovers in clean technology as compared to 
other fields of innovation. In this report we use a comprehensive analysis of global innovation 
data along with information on knowledge flows to estimate the value of knowledge spillovers 
created by innovations.  

Our methodology captures all economic value created by innovation that enters the profits of 
a firm. We estimate these private returns using a model that fits patent metrics to stock-market 
reactions when a patent is granted. This measure is a proxy for how much value the innovator 
appropriated from its innovation.  

To estimate the value of knowledge spillovers, we assign a portion of the private returns reaped 
by future innovators, building directly or indirectly upon an innovation, as the value of 
knowledge spillovers induced by a focal innovation. To track spillover links, we make use of 
the fact that innovators are required to cite prior art when applying for a patent. The network 
defined by these patent citations allows us to account for both direct and indirect knowledge 
flows between innovations.  

Our measure values knowledge spillovers by innovations that are created regardless of 
additional government support. However, the innovations that happen in response to a subsidy 
may have different returns than the ones we observe. Indeed, the subsidy-induced innovations 
are those that would not have been pursued based on their expected private returns only. The 
spillovers created by these innovations may differ from those created by the innovations that 
would have happened anyways. In addition, any given subsidy amount will result in different 
‘amounts’ of innovation based on the field-specific costs of innovating. We implement a 
methodology that addresses these issues by accounting for variation in the responsiveness of 
different technology fields to government support. Specifically, we use the observed private 
returns distribution in a field to infer the cost of pursuing an innovation, and the economic 
returns of subsidy-induced innovations. We use these estimates to construct a measure for the 
rate of return to a subsidy in a particular technology field.  

We calculate our metrics for various, broadly defined technological fields. In addition, we 
benchmark specific clean technology fields – e.g. Tidal Stream or Offshore Wind – to fields 
often considered to be high-potential for future growth – e.g. Biotechnology or Artificial 
Intelligence. To provide insights relevant for UK policy making we take into account the 
specific innovation landscape of the UK. We focus on innovation produced by inventors 
residing in the UK and examine the value of knowledge spillovers realized within the UK. 

To examine the potential of R&D support programmes that focus on technologies that are in 
the early stages of technology development, we compare our return-to-subsidy indicator for 
innovations with a proxy for high and low ‘technology readiness levels’ (TRL). To classify the 
TRL-level of an innovation, we use an indicator of technological novelty that leverages the fact 
that most (radically) novel innovations make completely new connections between clusters of 
knowledge. Such novel innovations require longer times to realize their value and are riskier 
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for firms to pursue. As such, they can be seen as having low levels of TRL and be used to 
examine the potential of targeting subsidies to low-TRL innovation projects. 

3. Methods 

3.1 Measures 

We rely on the methodology developed in Guillard et al (2021) to estimate the value of specific 
innovations. We also develop an indicator that allows ranking the return to public subsidies for 
different technology types. Here we provide a brief summary of the underlying methodology. 
We rely on global patent information from the PATSTAT database which we combine with 
data on firms from the Orbis Global database.  

To identify an innovation we rely on patent families identified in PATSTAT. When protecting 
an invention, an organization needs to file patent applications in all jurisdictions it seeks 
protection in. As such, one invention is often related to multiple patent applications. A patent 
family consists of all patent applications related to the same innovative step. For each patented 
innovation, the database contains various relevant pieces of information extracted from patent 
documents that are published during the examination process. We use information on 
technological classes (using the Cooperative Patent Classification scheme, or CPC), patent 
citations, patent claims (detailing what precisely is sought to be protected by the patent), time 
of filing, the number of patent applications related to the invention, the applicant name (the 
person or organization that will own the patent right) and the address of the inventors on the 
patent. We use the Orbis database to obtain a harmonized identifier of applicants across 
different patent families. 

We capture spillover links between innovations by the standard approach in economics to use 
citations present on the front page of patent documents. These citations are produced by the 
applicant and the patent examiner. They serve to position the ‘contribution’ of the invention as 
compared to the prior art of all previous inventions. These citations provide a ‘paper trail’ of 
knowledge linkages across different innovations. We use this information to identify which 
innovations benefit from the knowledge of the cited innovation. Therefore, patent citations can 
be used to construct a network of knowledge spillovers. Figure 1 shows an example of such a 
patent citation. On the left we see a US patent from 2008 on an improved approach for audio 
encoding citing a patent from 1981 for a wave energy device. Some of the mathematics 
required for the audio encoding was built on the mathematics developed for an efficient 
operation of the wave energy device.  

 

 

 

 

 

 



8 
 

Figure 1: Citation example 

 

Notes: Example of a patent citation. Left-hand side patent (of which the front page is shown) cites right-hand side 
patent as relevant prior art. 

To measure the economic value of knowledge spillovers as captured by patent citations, we 
develop Patent Rank (P-Rank). This measure is inspired by PageRank – Google’s original 
algorithm for ranking web pages.1 Instead of PageRank’s approach to use hyperlinks between 
web pages, Patent Rank uses citations between patent documents to assign an index of 
importance to every invention using the entire citation network. In particular, we assume that 
any innovation 𝑖 has a value of 𝑉௜ that consists of the sum of its private value 𝑃𝑉௜ and external 
(i.e. spillover) value 𝐸𝑉௜.  

𝑉௜ = 𝑃𝑉௜ + 𝐸𝑉௜ 

To derive a private value 𝑃𝑉௜  for every invention we rely on a two-step procedure. First, we 
use data from an event study approach developed by Kogan et al (2017) to infer the value of 
individual innovations from the change in the innovating firm’s share price – relative to the 
market – around the time when an innovation was first granted a patent for the underlying 
invention.2 In the second step we use those value estimates to predict invention monetary values 

                                                   
1 Page et al (1999) 
2 Note that this assumes that the market is able to accurately predict future cashflows derived from a 
patent grant. While this is a strong assumption for any given patent, idiosyncratic errors induced by 
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based on a number of patent indicators that are known to correlate to private value and are 
observed for all innovations. This step circumvents the problem that only a small fraction of 
all innovations belong to stock-listed firms. The predictors we use are a combination of timing 
of application, technological classification, the number of patent filings in the family and the 
number of claims. For instance, consider a patent belonging to class A61K31 (‘Medicinal 
preparations containing organic active ingredients’), filed for in 2006, having 5 claims and 7 
filings in its family. The private value of this invention is the average of the stock-market-based 
value of all inventions with exactly these characteristics.3  

The external value 𝐸𝑉௜ is a weighted average of the private value of all innovations that cite 𝑖 
either directly or indirectly. Because 𝐸𝑉௜ depends on the value of all innovations that cite 𝑖, the 
expression above defines a large system of equations that can be solved by an iterative 
algorithm.4 Figure 2 shows the intuition of the Patent Rank measure. It presents a simple 
citation network where a first innovation A is cited (hence produced knowledge spillovers for) 
by innovations B and C, which in turn are cited by innovations D and E. Innovations D and E 
are not cited, and hence produce no spillover value. Therefore, their total value is equal to their 
private value. However, a portion of this total value is assigned to innovations B and C as their 
spillover value. This means that their total value is larger than their private value. The same 
holds for innovation A, whose value depends not only on the value of B and C, but also on the 
value of D and E. The portion of value that is assigned as a spillover to cited inventions is given 
by  (𝜎 ∗ 𝑉)/𝐹.  

𝜎 is the marginal contribution of spillovers to the value of an invention. It is the fraction of the 
value of any innovation that stems from spillovers. The exact value of this parameter is an 
important area for further research.5  In prior work we find that different values change the 
exact return figures substantially (i.e. a higher value implies higher returns as indirect linkages 
are valued more highly). However, we find that the ranking of different innovations or fields 
of innovations in terms of their spillovers – which is the key interest of the current study -  is 
stable across different assumptions for 𝜎. Lacking explicit estimates for 𝜎 for the time being 
we rely on proxies in the existing literature. Aghion et al (2016) provide estimates of an 
innovation production function for clean car technologies. There, for clean car technologies 
they find elasticities of approximately similar size for the own and external knowledge stock 
contribution to the generation of new (clean) innovation. Inspired by this we set 𝜎 equal to 0.5 
which would correspond to equal contribution by a firms own efforts and external effects.6  

                                                   
departing from this assumption are averaged out when considering groups of patents. Our predictive 
model in the second step  
assigns an average stock-market-based value to a group of patents of at least 30, where group definitions 
are based on a combination of patent value predictors. As such, our method is robust to idiosyncratic 
errors produced by faulty predictions by the market. 
3 Analyses in Guillard et al. (2021) show that the private values based on our predictive model correlate 
well to the stock-market-based estimates in the sample for which both measures are available. 
4 For further detail see Guillard (2021). 
5 We hope to get more clarity about the most appropriate value for 𝜎 by embedding it in estimates of 
innovation production functions. 
6 However, we note that the same paper finds a smaller contribution for the spillover component in the 
creation of dirty technologies: the own component here is 4 times bigger than the spillover component 
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𝐹 is the number of patents that the innovation cites. We divide by 𝐹 to correct for differences 
in citation practices between technological fields. Without this correction, fields where it is 
customary to cite many inventions would display particularly high spillovers that would only 
reflect such practices, rather than real spillover differences. 

Figure 2: Intuition Patent Rank 

 

Notes: Illustration of the Patent Rank algorithm. Patented innovation A is cited by innovations B and C. Innovation 
B is cited by D, and innovation C is cited by D and E. Black arrows represent the direction of knowledge spillovers. 
Orange dotted arrows show how Patent Rank assigns a spillover value to individual innovations based on the value 
of innovations that cite them.  

Current approaches in the economics literature capture knowledge spillovers simply by 
counting the number of times the focal patent is cited by other patents as a measure of the 
‘amount’ of spillovers generated. Our methodology addresses two key drawbacks of this 
approach.  

First, whereas traditional measures assume that each citation represents the same spillover 
value, we integrate an estimate of the value of every innovation in our analysis. This implies 
that an innovation could be ranked higher if it is cited by innovations that are considered more 
valuable. In Figure 3 this is illustrated by invention A being cited by two low-value innovations 
B and D (as represented by the size of the bulb) and high-value innovation C.  

Second, traditional measures do not account for the presence of indirect knowledge spillovers. 
In Figure 3, innovation A is cited 3 times. Our measure, however, also takes into account that 
those innovations themselves are cited, which affects the spillover value of innovation A.  

                                                   
which would be more inline with a 𝜎 of 0.2. This would also suggest that in future work it could be 
useful to consider variable 𝜎’s across technology groups. 
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Figure 3: Comparison Patent Rank and forward citation count 

 

 

Given these new measures, we could compare fields in terms of value generated by 
innovations. However, such comparison would not be very informative for two reasons. First, 
the costs to innovate are likely to differ strongly between fields. While the innovation process 
proceeds in large steps with costly projects in Chemistry or Pharmaceuticals, it moves with 
smaller, less costly steps in fields like Computer technology or Semiconductors. Our value 
estimates are sensitive to these differences in costs, and therefore do not reflect returns to 
investments in a field. Second, additional subsidies to a field do not necessarily generate the 
‘typical’ inventions we observe in the data. Indeed, firms use subsidies to decrease their cost 
of innovating. The innovation projects that are caused by additional subsidies are the projects 
that would have not been pursued based on their expected private returns alone. As such, it is 
quite likely that the returns to the subsidy-induced innovations are different from the returns 
we observe in the data. 

To address these issues, we need measures for the costs of innovating in a field, as well as a 
projection of the value of subsidy-induced innovations. To obtain these estimates, we construct 
a model that characterizes innovator behaviour in a given technology field. We assume that the 
innovator observes ideas drawn from a left-skewed distribution – i.e. most ideas are not worth 
much, but some ideas are highly valuable. To create an innovation, the innovator needs to incur 
a fixed cost, after which she can reap its value which may turn out lower than expected. Fields 
differ in terms of how left-skewed their idea quality distribution is, and what are the costs to 
create an innovation from an idea. While we do not observe the ‘shape’ of the idea distribution 
or the costs of innovating, our model allows us to estimate  REF distribution \h using the 
distribution of realized values of innovations. Figure 4 illustrates how our model fits realized 
private value distributions in two technology fields. This figure compares the two parameters 
– the cost of developing ideas (𝑐௔) and the curvature of the idea quality distribution (𝛼௔) – as 
estimated by our model (blue line) and as observed in the data (orange bars).7 
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Figure 4: Actual and modelled distributions of private value 

 

Notes: Actual and modelled distributions of the private value (PV) of innovation in the ‘Preparations for medical, 
dental, or toilet purposes’ technology category (A61K)  and ‘Electric digital data processing’ (G06F). Blue line 
shows the modelled distribution given estimated parameter values. Orange bars show the distribution as observed 
in the data. 

 

Using estimated costs 𝑐 we can compute the average social return of a technology area 𝑎 as the 
average social value minus the cost of developing ideas over the cost of developing ideas: 

𝑅௔ =
𝑉ത௔ − 𝑐௔

𝑐௔
 (1) 

 

e.g. a return of 10% would imply that for every £1B of R&D money spent there would be an 
economy wide return of £100M. These return figures are a correct representation of the return 
to additional government R&D spending if we assumed that all such spending would fully fund 
research projects that are entirely additional – i.e. projects that the private sector would not 
have engaged in without government support – and that such projects would be equivalent to 
the average quality of all current research projects both in terms of their private and external  
value. This is unrealistic in at least three respects: First, we would expect that projects with a 
positive profit have already been undertaken by firms. Second, because of information 
asymmetry, governments might not be able to distinguish between projects that would have 
gone ahead anyways and those that would not. Hence, at least some government funding might 
not be additional. Third, those projects that are additional might not be entirely government-
funded; i.e. there might be marginal projects that firms would fund to a certain extent with 
some participation by government. 

We can address the first concern by looking at returns in terms of spillover only (see Figure 
16); i.e. this assumes that any additional project will provide value only via its external 
component. 

𝐸𝑉𝑅௔ =
𝐸𝑉തതതത

௔

𝑐௔
 (2) 
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To account for the other concerns outlined above we develop what we have dubbed the 
Industrial Strategy Index (IStraX). This indicator relies on the simple model of inventor 
behaviour discussed above to analyse the response by firms to an increase in government 
subsidy per project. Our model makes the conservative assumption that innovators would take 
a large amount of such an increase as a windfall gain on innovation projects they would have 
undertaken anyways. However, there would be some increase in the amount of innovation 
because inventors would start developing some ideas that were previously considered not 
sufficiently promising; i.e. those ideas just below the private-cost-threshold. Hence, this 
response will depend on the skewness of the idea generation distribution (a less skewed 
distribution will – all else equal – place more ideas just below the cost threshold). Our model 
estimates the value of the subsidy-induced innovation projects that are pursued given additional 
subsidies in a field. This value includes both the private and spillover value of additional 
projects.8 IStraX also addresses another potential shortcoming of the measures suggested in 
equations 1 and 2. In both we are assuming that spillovers of any additional project correspond 
to the value of spillovers in the average project. However, because additional projects are of 
lower quality (in terms of their private value), their spillover potential might also differ.9 In 
computing ISTRAX we estimate this difference from the spillover values of projects near the 
cut-off threshold.  

The nature of our spillover measure allows to distinguish between returns that are made at the 
national as opposed to global level. By definition, private returns from innovations originating 
at the national (here UK) level are returns reaped by a country. Spillovers, however, may flow 
to innovators within or across country borders. In addition, spillovers could flow outside the 
borders, but ‘re-enter’ a country through indirect linkages in the citation network. As UK 
policymakers are likely most interested in the returns that are reaped within the UK, we  
compute IstraX by taking into account only spillovers retained within the UK. Figure 5 
illustrates how we do this. Suppose we want to calculate the value of UK-based innovation A 
that is directly cited by a non-UK innovation, which itself is cited by two UK-innovations.10 
To capture UK spillovers from innovation A, we perform the P-Rank algorithm discussed 
above, but assign a value of zero to all non-UK inventions in the network. Doing this excludes 
the spillover value created across borders, but allows to capture spillovers captured by the UK 
through indirect network links. To allow for comparison, we also report IstraX when taking 
into account global instead of within-UK spillovers.   

 

                                                   
8 Note that the contribution of the private value in this total value is very small because projects induced 
by the subsidy are those where the private value is close to the cost of executing the project, and hence 
will not be profitable for the firms pursuing them in the absence of a subsidy. 
9 Our approach is agnostic to the direction of this difference. On the one hand we might assume that 
projects with lower private value are also of lower social value. However, it could also be that lower 
private value projects are more fundamental which could motivate that they are of higher external value. 
Indeed this is what we find for most technology areas when looking at TRL below. 
10 We assign innovations to a particular country based on the location of the inventor (i.e. in the case of 
multinationals this might not necessarily be the headquarters of a company that owns the patent on the 
innovation). 
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Figure 5: Global vs. national spillovers 

 

To assess the technology readiness level (TRL) of an innovation, we use an indicator of 
technological novelty developed in Verhoeven et al. (2016). The indicator is grounded in the 
observation that radically novel technologies – those with presumably low levels of TRL – are 
often the result of making completely new connections between previously existing 
components and clusters of knowledge.11 The indicator uses detailed technological classes to 
represent these knowledge clusters. An innovation scores on the novelty indicator if its patent 
is the first to make at least one combination between classes for the first time. This indicator 
has been shown to identify a large number of expert-assessed, novel inventions. In addition, 
novel inventions are overrepresented in both tails of the technological success distribution, 
indicating their high-risk profile. We classify inventions identified as novel based on this 
indicator as being low in TRL, and those that do not score as being high in TRL.  

3.2 Discussion of methods and data 

While our approach has a number of distinct advantages over existing methods, a number of 
limitations remain and need to be taken into account when interpreting the results. In this 
section, we discuss some key advantages of our approach compared to prior work and highlight 
a number of limitations. 

Most of the economics of innovation literature has measured the returns to R&D by counting 
the number of patents as an innovation output measure. However, it is widely accepted that 
there is large variation in the value distribution of patented innovations. To partially address 
this issue, some studies weight patent counts by the number of citations received. However, 
the number of citations received is a measure of technological, rather than commercial success, 
and therefore conflates private and social returns to innovation. Our approach explicitly 

                                                   
11 For instance, the invention of the Oncomouse – a mouse that is genetically engineered to develop 
cancer – was the first technology that combined knowledge in genetic engineering to knowledge about 
using animal models for drug development. In doing so, this invention allowed tremendous advances in 
biomedical research by constructing an in vivo environment to test a wide range of drugs and treatments. 
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disentangles both sources of value and uses the best methods available to capture variation in 
the private value of innovations.  

Next to being a tool to weight patent counts by quality, citation counts have been used to 
measure the spillovers created by innovation. However, these citation counts typically do not 
account for the value of the citing innovation, nor do they measure indirect knowledge 
spillovers by looking at the patent documents indirectly linked to the focal innovation. Our 
approach addresses these caveats and therefore produces more realistic measures of the value 
knowledge spillovers. In previous work, we show that our spillover measure produces vastly 
different rankings when compared to forward citation counts. In addition, our validation 
exercises suggest that our measure gives a more realistic account of knowledge spillovers 
induced by innovations.  

A final advantage of our method is that, rather than using realised (spillover) returns to R&D 
to compare fields, we estimate the expected returns to additional subsidies in a field. This 
approach more realistically models economic behaviour of innovators in response to subsidies.  

An important caveat to our methods is that we only observe innovations that are patented. Many 
innovations are not patented and are protected through secrecy or other intellectual property 
mechanisms. Our estimates do not account for this and will not offer a correct comparison 
between fields if their returns to non-patented innovation substantially differ from those to 
patented innovation.  

Another concern with using patent data are two types of right-censoring. First, there is a 
considerable time lag in assembling all patent documents into the database we use because 
there is a lag between patent application and its resulting publication document (from which 
all patent-based information is derived). For PATSTAT, we observe a drop in the number of 
patent filings starting from 3 to 4 years before the end of the time window considered in the 
database. Because there might be differences between fields in how large this lag is, including 
these later years could result in truncation bias. This is why we report below results relying on 
data up until 2014. However, our earlier research suggests that there is a considerable degree 
of stability in the degree of spillover flows emerging from different technology types and 
countries. Nevertheless we suggest that this kind of analysis is regularly updated as the 
underlying patent databases are updated. The analyses performed in this report could be 
periodically updated to both monitor and guide industrial policy related to public R&D support.  

A second type of right censoring concerns the timing of knowledge spillovers. In principle, one 
would have to wait indefinitely to truly register all spillovers created by innovation. In practice, 
we assume that the citations that materialise within the first couple of years after the occurrence 
of an innovation are a good predictor of its long run impact. In our results we report average 
returns across innovations with a varying time windows for accumulating citations. We show 
below that this has a considerable impact on the estimated absolute return figures. However, it 
has no impact on the relative ranking of different technologies. 

A final limitation stems from the predicative ability of patent-based measures in a rapidly-
evolving energy sector. Previous innovation fields may have yielded lucrative returns, but leave 
little room for further innovation. Conversely, lagging fields during our sample period may 
develop revolutionary changes and breakthrough innovations, as focus switches to new 
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decarbonisation technologies. This is perhaps indicative of the rapid technological change and 
adoption of climate mitigating technologies observed over the past decade in many economies. 

 

4. Results 

4.1 Trends in innovation  

To set the scene, Figures 6 and 7 provide an overview of recent innovation performance – as 
measured via patented innovation – of the UK. The number of innovations filed by UK-based 
inventors fell by about 10% in the wake of the global financial crisis, from nearly 14,6K in 
2006 to a low of about 13K in 2009. Innovation has since then recovered; however 2014 levels 
are still below the peak of 2006. 

The drop in innovative performance of the UK is particularly stark when compared to other 
countries, namely those within the EU. While EU-countries also saw a drop in innovation post-
recession, this was at most a dip on an otherwise steep growth path, rather than a sustained 
stagnation as in the UK. 

Things look more positive for innovations by UK-based inventors classified as clean12: the 
number of such innovations increased continuously even after 2007. However, after 2011 the 
share of clean innovations in total innovations decreased. This is a global feature which has 
been pointed out by a number of papers (Popp et al 2020, Acemoglu et al 2019). There is an 
ongoing debate regarding the drivers of this. Candidate explanations include a declining price 
for fossil fuels, the discovery and development of shale gas and oil deposits and less appetite 
of financial markets for potentially more risky innovation projects. 

 

Figure 6: Comparison innovations UK and EU 

 

Notes: Evolution of number of patented innovations for the UK (blue) and EU27 (yellow). We use the patent family 
as defined by the PATSTAT database as unit of analysis. Countries are assigned based on address information of 
inventors on patent documents. 

 

                                                   
12 Here, we use the ‘Y02-classification’ developed by experts at the European Patent Office to tag 
climate-change-mitigating technologies. 
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Figure 7: Evolution UK innovations by field 

 

 

Notes: Breakdown of the evolution of patented innovations in the UK by broad technological field (left) and the 
evolution of the share of Clean innovations in the UK (right). Technological fields are based on a mapping of 
technological classes on patent documents (CPC codes) to broad technology fields. For Chemistry, Electrical 
Engineering, Instruments, Mechanical Engineering and Others we use a mapping developed by the OECD 
(Schmoch, 2008). For Total UK Clean Innovation we use the ‘Y02’ class assigned to patent documents by experts 
at the European Patent Office (EPO). Category Trending includes a combination of a number of trending fields such 
as Artificial Intelligence, Biotechnology or 3D printing based on CPC codes that we selected manually. Because 
one innovation can belong to multiple categories, the total number of innovations on the left-hand-side graph 
exceeds the unique number of innovations in the UK from the previous figure. 

4.2 Returns to innovation 

 Figure 8 reports our main result: the within-UK social returns to R&D support for different 
technology types. The left panel reports returns for broad technology groupings. The right 
panel zooms in on the BEIS Clean Innovation sectors (Appendix 2 details how these sectors 
were derived)  as well as on the “Trending” category, a collection of cutting edge fields that 
often receive particular attention in the public debate on innovation. Looking first at the right 
panel we see that the return on clean innovations – defined either by the BEIS definition or via 
the EPO definition – exceeds that of any other technology category including the trending 
category. That said: we see from the left panel that returns are very heterogenous within various 
subclasses of the clean and trending categories: we find that Tidal Stream and Offshore Wind 
technologies in particular lead to returns that are more than twice the average return across all 
categories. CCUS, Smart Systems and Building Fabric are further categories that are above 
average returns. Hydrogen is exactly at the average return, and ranks above all other clean 
categories considered. Note that the right panel also shows considerable heterogeneity for 
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different trending technologies, although the highest return category (wireless) is still below 
the leading clean fields Tidal and Offshore. 

The overall domestic UK return appears rather low. The average return for clean technologies 
as defined by BEIS is a mere 3.3%. However, as we discussed above, the IStraX measure will 
provide a robust indicator for the relative return across different technology categories. Its 
reliability to compute the absolute level of return is more limited. In addition, there are several 
factors that imply that it provides at best a lower bound, most importantly because knowledge 
spillovers take time to occur. Hence, the most recent innovations (in our dataset) will have had 
little opportunity to produce any spillovers irrespective of their actual ability to do so. In the 
appendix we explore this issue by reporting R&D returns (In Figure 11) for different 
technology groups using only innovations for the period 2005-2009; i.e. innovations that had 
at least an interval of 5 years to accumulate spillovers. This analysis shows two interesting 
patterns: First, restricting to the earlier half of the time-window has no effect on the ranking of 
different technology groups, confirming our earlier suggestion that the ranking of technologies 
is robust. Second, we see a substantial increase in the reported rates of return. The average rate 
of return for the BEIS definition of clean technologies is now nearly 6%. This is still a lower 
bound because innovations from 2005-2009 are expected to generate spillovers after 2014. To 
examine the extent of spillover creation in the long run, Figure 13 plots the average yearly 
spillovers generated by inventions from the year 1990. It shows that spillover creation is largest 
7 years after the invention. Afterwards spillovers level off to about 1/3 the peak value, but 
remain rather stable until 2014, the end of the sample period. Cumulatively, about 50% of the 
total spillovers are realized within 8 years of the invention and 75% within 15 years. Taken 
together, these results suggest that the long-term benefits of R&D support are considerably 
larger than those estimated in this report but that ignoring those longer term spillovers has little 
impact on the ranking of technology fields. 

Our return rates are estimated for innovative activity between 2005-2014. Whether these 
estimates are predictive for future subsidy return rates is hard to tell with certainty. However, 
we can analyse the extent to which they have been historically stable over time.  Figure 14 in 
Appendix 1 addresses this question. It compares UK national return rates for two intervals, 
2000-2009 and 2005-2014, at the level of 128 CPC classes. The correlation between the two 
periods is 0.53. While this shows there is scope for improving predictive power, return rates 
seem to be reasonably stable over time. This provides suggestive evidence that the return rates 
we estimate are indicative of future returns to subsidies. 
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Figure 8: Within UK social returns to R&D subsidies in the UK by technological field 

 

Notes: Expected returns to government R&D subsidies (IstraX) by technology field (y-axis) and 95% confidence 
bands. The (vertical) width of a bar indicates the size of a particular technology grouping by number of innovations. 
The x-axis shows the estimated returns within the UK to a £1 additional R&D subsidy in the field. Left-hand figure 
compares Clean innovation fields (‘BEIS Clean Innovation Sectors’ groups sectors as described in Appendix 2; 
‘Total UK Clean Innovation’ uses the EPO ‘Y02’-class to group patents into climate-change-mitigating technology) 
to other broad technology fields. Right-hand figure benchmarks particular Clean innovation subfields to a number 
of Trending subfields that have been identified as interesting subsidy targets. Dotted line represents the weighted 
average across technology fields. 

UK policy makers will be most keenly interested in spillovers that occur within the UK. Our 
methodology ensures that we pick up not only if such spillovers occur directly within the UK, 
but also if this occurs indirectly via other innovators that might not necessarily be UK based. 
However – as has been pointed out by Guillard et al (2021) – spillovers in relatively small and 
open economies mainly benefit inventors in different countries.  Being such an economy, it is 
meaningful for the UK to also examine – next to within-UK returns – the global returns 
generated.  

Figure 9 examines global social returns to R&D subsidies and reveals several points. First, we 
see dramatically higher rates of return; e.g. we find an average return rates of 35%-40% for 
clean technologies as a whole as opposed to 3.3% for national returns only. This confirms the 
gap found in Guillard et al. (2021) between within-country and global spillovers for countries 
in Europe. In part, this gap could be explained by the size of the UK economy relative to the 
size of the rest of the world. However, it could also reflect specific features of the UK economy, 
such as greater openness, a less strategic approach to industrial and innovation policy13, or the 
UK being at the frontier of knowledge producing cutting edge technology with high value for 
technology development elsewhere. Second, in terms of global returns the ranking of 

                                                   
13 For instance, Guillard et al (2021) show that a number of economies such as South Korea or Germany 
that are of comparable size to the UK have substantially higher rates of spillover internalisation; i.e. 
spillover flows within the respective countries as a share of total spillovers generated. 
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technologies is different. Clean technologies as a whole still show above average returns. 
However, as a group they are now eclipsed by both Trending and Electrical Engineering 
technologies. Also within clean technologies there is a shift in the relative ranking. While 
offshore wind and Smart Systems are still leading, Tidal Stream technologies are now on rank 
10 whereas in particular solar technology has moved up. 

Figure 9: Global social returns to R&D subsidies in the UK by technological field 

 

Notes: Expected returns to government R&D subsidies (IstraX) by technology field (y-axis) and 95% confidence 
bands. The (vertical) width of a bar indicates the size of a particular technology grouping by number of innovations. 
The x-axis shows the estimated global returns to a £1 additional R&D subsidy in the field. Left-hand figure compares 
Clean innovation fields (‘BEIS Clean Innovation Sectors’ groups sectors as described in Appendix 2; ‘Total UK 
Clean Innovation’ uses the EPO ‘Y02’-class to group patents into climate-change-mitigating technology) to other 
broad technology fields. Right-hand figure benchmarks particular Clean innovation subfields to a number of 
Trending subfields that have been identified as interesting subsidy targets. Dotted line represents the weighted 
average across technology fields. 

4.3 Technological readiness 

An important characteristic of an innovation project is its technological readiness (TRL). 
Should governments focus their funding efforts on projects that are more or less 
technologically ready? Part of the answer to this might depend on the degree to which TRL 
determines knowledge spillovers. TRL is not a characteristic that is recorded within patent 
documents. As a substitute, we use a measure of the (radical) novelty of an innovation. Hence, 
we consider a more radical project to be less technologically ready. Figure 10 shows within-
UK social return figures (IStraX) separately for innovations with low (radical) and high (not 
radical) TRL. We see that rankings for the broadly-defined classes are very similar between 
TRL levels and equivalent to the overall results. In particular clean technologies show the 
highest levels of return. Also note that, in most cases, low TRL levels are associated with higher 
economic returns. However, this is not the case for all categories. For Chemistry and 
Instruments the ranking is reversed (see also Table 1). The ranking of the detailed clean and 
trending categories is also similar between low and high TRL levels. Although there are some 
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notable exceptions: CCUS is creating more social value when it comes to high TRL whereas it 
ranks last in terms of low TRL. 

Figure 10: Social returns (IStraX) within the UK by technological readiness 

TRL Low 

 

TRL High 

 

Notes: Expected returns to government R&D subsidies (IstraX) by technology field (y-axis) and 95% confidence 
bands for innovations with low (upper panel) and high (lower panel) levels of TRL. The (vertical) width of a bar 
indicates the size of a particular technology grouping by number of innovations. The x-axis shows the estimated 
returns within the UK to a £1 additional R&D subsidy in the field. Left-hand figure compares Clean innovation 
fields (‘BEIS Clean Innovation Sectors’ groups sectors as described in Appendix 2; ‘Total UK Clean Innovation’ 
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uses the EPO ‘Y02’-class to group patents into climate-change-mitigating technology) to other broad technology 
fields. Right-hand figure benchmarks particular Clean innovation subfields to a number of Trending subfields that 
have been identified as interesting subsidy targets. Dotted line represents the weighted average across technology 
fields. 

Table 1: ISTRAX by technological readiness 

  
Share 
high 
TRL 

IStraX 
low 
TRL 

IStraX 
high 
TRL 

Broad fields    

BEIS Clean Innovation Sectors 0.8822 0.0428 0.0320 
Total UK Clean Innovation 0.9022 0.0366 0.0313 
Chemistry 0.9059 0.0171 0.0199 
Electrical Engineering 0.9552 0.0270 0.0252 
Instruments 0.9187 0.0223 0.0226 
Mechanical Engineering 0.8755 0.0225 0.0220 
Trending 0.9695 0.0247 0.0247 
Other 0.9061 0.0238 0.0244 
Narrow fields    

3D Printing 0.7330 0.0004 0.0452 
Aerospace 0.8118 0.0069 0.0224 
Artificial Intelligence 0.9823 0.0119 0.0145 
Biomass & Bioenergy 0.8371 0.0054 0.0212 
Biotechnology 0.9554 0.0434 0.0200 
Building Fabric 0.9313 0.0602 0.0365 
CCUS 0.8430 0.0000 0.0556 
Heating and Cooling 0.8791 0.0251 0.0255 
Hydrogen 0.8462 0.0073 0.0315 
Industry 0.8328 0.0396 0.0201 
Nuclear 0.7834 0.0207 0.0231 
Offshore Wind 0.8820 0.1285 0.0578 
Robotics 0.8750 0.0507 0.0074 
Smart Systems 0.9255 0.0886 0.0405 
Solar 0.9071 0.0143 0.0110 
Tidal Stream 0.8503 0.2054 0.0388 

Wireless 0.9887 0.0374 0.0479 
Notes: Summary of results from the TRL analysis. First column shows the share of innovations with high TRL by 
technology field. This share is equal to 1 minus the share of innovations that are classified as novel as measured by 
introducing new combinations of technology classes. Second and third columns compare the IStraX indicator for 
low- and high-TRL innovations respectively. Bold format indicates the maximum IStraX by TRL-level. 
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5. Conclusion 

In this study we have examined a number of approaches to compute the social return of public 
R&D subsidies for different technology groups with a particular focus on various Clean 
technology types for the UK. Our most advanced approach – dubbed Industrial Strategy Index 
(ISTRAX) – takes into account both direct and indirect knowledge spillovers to compute 
economic return. We also account for the possibility that governments might struggle to only 
fund additional innovation. We also distinguish between innovation spillovers that are 
internalised within the UK and those that are not. 

This leads to robust evidence that returns from clean technologies are substantially higher than 
returns from other technology groups including a set of trending technologies that are often 
discussed as cutting edge. However, there is considerable heterogeneity across various clean 
subgroups. That said: we find a surprisingly robust ranking across classes with Tidal Stream, 
Offshore wind, CCUS, Smart Systems and Building Fabric displaying the highest/above 
average returns and Solar, Biomass, Nuclear and Industry trailing the ranking – with solar 
coming lowest.  

Hence, this suggest that prioritising the leading categories as part of the governments clean 
innovation portfolio would not only help to address the UK’s net zero ambition but could also 
make a contribution towards economic growth. 
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Appendix 

Appendix A: Additional Results 

Robustness of IStraX calculations 

In this section we provide a number of results to explore the robustness of our main results. 

In Figure 11 and 12 public returns across technology categories restricting ourselves to 2005-
2009 innovations only (rather than 2005-2014 innovations) while allowing for spillovers from 
innovations between 2005-2014  i.e. innovations that had at least an interval of 5 years to 
accumulate spillovers. This analysis shows two interesting patterns: First, restricting to the 
earlier half of the time-window has no effect on the ranking of different technology groups, 
confirming our earlier suggestion that the ranking of technologies is robust. Second, we see a 
substantial increase in the reported rates of return. The average rate of return for the BEIS 
definition of clean technologies is now nearly 6%. This is still a lower bound because 
innovations from 2005-2009 are expected to generate spillovers after 2014.  

Figure 11: Within UK social returns to R&D subsidies in the UK by technological field 
(2005-2009 Innovations) 

 

Notes: Expected returns to government R&D subsidies (IStraX) by technology field (y-axis) and 95% confidence 
bands. The innovations included are from the 2005-2009 period and we count spillovers induced by these innovation 
up to 2014. The (vertical) width of a bar indicates the size of a particular technology grouping by number of 
innovations. The x-axis shows the estimated returns within the UK to a £1 additional R&D subsidy in the field. 
Left-hand figure compares Clean innovation fields (‘BEIS Clean Innovation Sectors’ groups sectors as described in 
Appendix 2; ‘Total UK Clean Innovation’ uses the EPO ‘Y02’-class to group patents into climate-change-mitigating 
technology) to other broad technology fields. Right-hand figure benchmarks particular Clean innovation subfields 
to a number of Trending subfields that have been identified as interesting subsidy targets. Dotted line represents the 
weighted average across technology fields. 
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Figure 12: Global social returns to R&D subsidies in the UK by technological field (2005-
2009 Innovations) 

 

Notes: Expected returns to government R&D subsidies (IStraX) by technology field (y-axis) and 95% confidence 
bands. The innovations included are from the 2005-2009 period and we count spillovers induced by these innovation 
up to 2014. The (vertical) width of a bar indicates the size of a particular technology grouping by number of 
innovations. The x-axis shows the estimated global returns to a £1 additional R&D subsidy in the field. Left-hand 
figure compares Clean innovation fields (‘BEIS Clean Innovation Sectors’ groups sectors as described in Appendix 
2; ‘Total UK Clean Innovation’ uses the EPO ‘Y02’-class to group patents into climate-change-mitigating 
technology) to other broad technology fields. Right-hand figure benchmarks particular Clean innovation subfields 
to a number of Trending subfields that have been identified as interesting subsidy targets. Dotted line represents the 
weighted average across technology fields. 

 

To examine the extent of spillover creation in the long run, Figure 13 plots the average yearly 
spillovers generated by inventions from the year 1990. It shows that spillover creation is largest 
7 years after the invention. Afterwards spillovers level off to about 1/3 the peak value, but 
remain rather stable until 2014, the end of the sample period. Cumulatively, about 50% of the 
total spillovers are realized within 8 years of the invention and 75% within 15 years. Taken 
together, these results suggest that the long-term benefits of R&D support are considerably 
larger than those estimated in this report but that ignoring those longer term spillovers has little 
impact on the ranking of technology fields. 
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Figure 13: Global Spillovers Over Time 

 

Notes: Analysis of spillovers generated by inventions from the year 1990. Bars (left y-axis) show the additional 
spillover value realized over time by the average 1990 innovation. Values are in 1982 US dollars and represent 
global spillovers. Line shows the cumulative fraction of spillovers realized over time. It shows how many of the 
total 1990-2014 spillovers were realized in a given year. 

Our return rates are estimated for innovative activity between 2005-2014. Whether these 
estimates are predictive for future subsidy return rates is hard to tell with certainty. However, 
we can analyse the extent to which they have been historically stable over time.  Figure 14 
addresses this question. It compares UK national return rates for two intervals, 2000-2009 and 
2005-2014, at the level of 128 CPC classes. The correlation between the two periods is 0.53. 
While this shows there is scope for improving predictive power, return rates seem to be 
reasonably stable over time. This provides suggestive evidence that the return rates we estimate 
are indicative of future returns to subsidies. 

Figure 14: Stability of IStraX over time 

 

Notes: Analysis of the correlation between IStraX calculated for different time windows at the CPC Class level. For 
each of 128 CPC classes, we calculate IStraX UK national return rates for the periods 2000-2009 (x-axis) and 2005-
2014 (y-axis). The blue line is the best linear fit and the shaded area is the confidence interval around this best fit 
estimated using bootstrapping with 1000 samples. The correlation coefficient between the two variables is 0.54, the 
Spearman rank correlation is 0.53. 
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Alternative measures of R&D subsidy return 

Above, we focused on the marginal impact of R&D subsidies taking into account that such 
subsidies can only affect the overall amount of innovation by inducing firms to expand 
previously marginal projects. In other words, we assume that a large part of any extra public 
funding would simply provide a windfall gain for innovators within projects that would have 
gone ahead irrespective of the funding.  

In this section, we show the results of using alternative indicators to rank technological fields, 
as suggested in the methods section. First, we calculate the average return on R&D investments 
(Equation 1) in projects that are undertaken in the absence of additional subsidies.  Figure 15 
shows the ranking of technological fields based on these overall returns to R&D investments. 
Two findings stand out. First, overall return rates to R&D investments are vastly higher as 
compared to the IStraX figures reported earlier. For instance, Clean technologies as classified 
by BEIS show returns of nearly 80%. This implies total economic returns from investing in 
R&D are very large. Second, rankings of technology fields differ substantially from rankings 
based on IStraX. Clean technologies as a whole are now ranked more towards the bottom. Also, 
within clean technologies, Tidal Stream and Offshore Wind – previously ranked first – are now 
in last and 5th to last place. However, some clean technologies – notably CCUS and hydrogen 
– are still ranked at or near the top of the ranking. Taken together, these findings suggest that 
designing R&D support programmes using overall returns realized with R&D that is 
undertaken regardless of additional R&D support, may be misleading. This approach assumes 
that R&D subsidies result in projects with equal private and spillover returns as those 
undertaken in the absence of government intervention. This is an unrealistic assumption 
because projects with substantial private benefits would likely have been undertaken already 
in the absence of any subsidy, and therefore are not induced by the subsidy itself. 

Figure 15: Average within UK returns per amount of R&D  

 

Notes: Average returns to R&D (projects undertaken regardless of additional subsidies) by technology field (y-axis) 
and 95% confidence bands. The (vertical) width of a bar indicates the size of a particular technology grouping by 
number of innovations. The x-axis shows the sum of the private value and spillover value induced within the UK 
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for an R&D investment of £1 in the field. Left-hand figure compares Clean innovation fields (‘BEIS Clean 
Innovation Sectors’ groups sectors as described in Appendix 2; ‘Total UK Clean Innovation’ uses the EPO ‘Y02’-
class to group patents into climate-change-mitigating technology)  to other broad technology fields. Right-hand 
figure benchmarks particular Clean innovation subfields to a number of Trending subfields that have been identified 
as interesting subsidy targets. Dotted line represents the weighted average across technology fields. 

Next, we construct rankings based on the average spillover value (EV) over R&D investment. 
This approach abstracts from any private returns that are generated from R&D investments. 
These return rates would reflect the returns to subsidies if we assume that R&D induced by 
subsidies do not increase the private returns of firms, but do generate spillover value (EV) 
equivalent to the average spillovers generated by R&D investments as observed in the absence 
of additional subsidies. As shown in Figure 16, using this indicator leads to returns to 
technology groups that are broadly in line with the findings for ISTRAX. These results indicate 
that private returns and spillover returns are not strongly correlated. Indeed, as IStraX assumes 
that the additional projects due to the subsidy are of lower private value, the absence of a strong 
correlation implies that the spillover value for these additional projects are not (much) lower. 
The fact that we observe similar returns is reassuring because it suggests that our baseline 
results are not driven completely by our assumptions on the (unobserved) value of projects 
below the private cost threshold.  

 

Figure 16: Average within UK returns per amount of R&D – Spillovers only 

 

Notes: Average spillover returns to R&D (projects undertaken regardless of additional subsidies) by technology 
field (y-axis) and 95% confidence bands. The (vertical) width of a bar indicates the size of a particular technology 
grouping by number of innovations. The x-axis shows the spillover value induced within the UK for an R&D 
investment of £1 in the field. Left-hand figure compares Clean innovation fields (‘BEIS Clean Innovation Sectors’ 
groups sectors as described in Appendix 2; ‘Total UK Clean Innovation’ uses the EPO ‘Y02’-class to group patents 
into climate-change-mitigating technology) to other broad technology fields. Right-hand figure benchmarks 
particular Clean innovation subfields to a number of Trending subfields that have been identified as interesting 
subsidy targets. Dotted line represents the weighted average across technology fields. 
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Table 2: Comparison different indicators 

  IStraX 
IStraX 
Global 

Average 
Returns 
(PV+EV-c)/c 

Average 
Spillovers 
(EV-c)/c 

Count 

Broad fields      

BEIS Clean Innovation Sectors 0.0333 0.3719 0.7254 0.0322 6233 
Total UK Clean Innovation 0.0318 0.4210 0.7742 0.0326 10676 
Chemistry 0.0196 0.2463 0.7451 0.0275 32615 
Electrical Engineering 0.0253 0.4466 1.1457 0.0354 51153 
Instruments 0.0225 0.2754 0.9827 0.0355 33466 
Mechanical Engineering 0.0221 0.2412 0.8918 0.0247 41084 
Trending 0.0247 0.4549 0.8632 0.0355 24075 
Other 0.0243 0.2021 0.6698 0.0271 25821 
Narrow fields      

3D Printing 0.0332 0.3085 0.3750 0.0277 191 
Aerospace 0.0195 0.4083 0.7610 0.0183 861 
Artificial Intelligence 0.0145 0.4149 0.8404 0.0218 11316 
Biomass & Bioenergy 0.0183 0.3681 0.3429 0.0210 313 
Biotechnology 0.0211 0.2540 0.6680 0.0351 6161 
Building Fabric 0.0383 0.4139 0.7377 0.0312 1966 
CCUS 0.0466 0.1932 1.3234 0.0618 121 
Heating and Cooling 0.0254 0.2445 0.6732 0.0281 935 
Hydrogen 0.0278 0.2876 1.7323 0.0337 325 
Industry 0.0236 0.2573 0.8458 0.0316 1286 
Nuclear 0.0225 0.2763 0.5677 0.0227 531 
Offshore Wind 0.0664 0.5891 0.3034 0.0515 1085 
Robotics 0.0128 0.4877 1.0977 0.0147 80 
Smart Systems 0.0441 0.4875 0.8006 0.0470 577 
Solar 0.0113 0.5792 0.4085 0.0099 323 
Tidal Stream 0.0669 0.3256 0.4579 0.0665 187 
Wireless 0.0478 0.7456 1.1363 0.0642 5904 

Notes: Summary table of different metrics by technology field. First column shows expected returns within the UK 
to government R&D subsidies (IStraX). Second column shows the global returns to government R&D subsidies 
(IStraX Global). Third and fourth columns show the average within-UK-returns to R&D and, respectively, the 
average within-UK-spillover-returns to R&D. Final column shows a count of the number of innovations in the field.  
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Appendix B: Patent Code Derivation 

As part of this paper, BEIS developed a bespoke methodology to derive a set of patent codes 
relevant to the aforementioned ‘BEIS Clean Innovation Sectors’. Here, we set out the 
methodology to note its strengths and weaknesses and provide a comprehensive list of patent 
code tables below.  

To derive relevant codes, the approach was undertaken in four steps. First, an innovation 
framework was developed, centring around the findings detailed in the Energy Innovation 
Needs Assessment (henceforth referred as EINA) (Vivid Economics, 2019). These papers 
allow a bespoke set of search terms to be produced from innovation opportunities for the UK, 
creating a sufficiently granular – but bounded – set of patents that are relevant to BEIS’ 
innovation programmes.14 Second, using the established framework, patents were searched 
using the CPC Espacenet Classification search tool, utilising the terms in the component 
breakdown and innovation opportunity descriptions. Third, EINA framework compliant 
patents were then sense-checked by engineers within the BEIS to obtain an estimate for the 
degree of relevancy that each patent code had in matching with the EINA framework.15 The 
general areas considered to have technological significance include (but not limited to) 
innovations in the following: 

• Design, process efficiency, yield improvement. 

• Cost reduction. 

• Renewable energy, GHG reduction to achieve Net Zero. 

• Technological reliability and sustainability. 

• Health, safety, and risk reduction. 

• Scalability and storage capacity. 

• Energy from waste and its management. 

The fourth step in this process was to further benchmark derived patent codes with existing 
academic studies. Published studies were selected which provided a list of patent codes for 
each sector, to ensure that core codes were not missing from the framework – the benchmark 
academic studies were not used as an exhaustive list, with the inclusion other codes conditional 
in relating to the underlying EINA framework.  

The strength of this approach is foremost its relevance and applicability to BEIS innovation 
programmes. A result of this methodology ensures that core ‘Y02’ codes are included to 
provide a baseline set of patents, which are expanded upon into more granular technology areas 
of relevance. This approach generates a comprehensive set of codes to use, but also established 
consistency across BEIS-funded studies, resulting in well-aligned sectors of interest.  

                                                   
14 Road Transport and Disruptive categories were not included due to falling outside BEIS’ remit and 
difficulty in specifying relevant codes, respectively.  
15 This is noted in the below tables as the ‘Engineering Relevance Rating’. Only those noted as ‘High’ 
and ‘Medium’ relevance were included.  
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The limitations of this approach derive from the subjectivity of which codes to include and 
those which are considered of engineering relevance. This could lead to bias with the inclusion 
and/or exclusion of various innovation categories. However, in an effort to counteract any bias, 
all codes have been closely aligned to a pre-existing innovation framework and benchmarked 
to existing academic studies. These robustness tests have demonstrated strong alignment that 
often goes above and beyond existing academic studies and methods to establish patent codes.  

The patent derivation methodology also leads to substantial heterogeneity within the sector 
groupings. For example, the hydrogen classification covers a broad set of patents for 
production, distribution, and storage, whilst offshore wind is primarily focused on generation 
only. Consideration therefore needs to be applied to ensure conclusions are accurately made 
across technology classifications. Detailed insight to break down larger sectors may be an area 
to merit potential further research. 

A further limitation to this approach stems from the bespoke alignment to UK innovation 
priorities at a single point in time. The changing dynamics of innovation – and subsequent 
innovation priorities – are likely to shift, meaning the alignment to future policy needs may 
diminish over time. Furthermore, the use of a UK-specific innovation needs framework 
restricts the ability of international comparisons when using the same patent sectors. A solution 
to this could be to consider the Global Innovation Needs Assessment (GINA) framework and 
innovation priorities to provide more universal coverage. 16 

The below tables detail the patent codes derived for each BEIS Clean Innovation Sector. Core 
“Y02” codes have been highlighted in red, which represent a fundamental baseline for sector 
innovations.  

                                                   
16 See: https://www.climateworks.org/report/ginas/  
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Table 3: Biomass & Bioenergy Patent Codes 

Biomass & Bioenergy 
Academic Benchmark: Johnstone (2010) Renewable energy policies and technological innovation: evidence based on patent counts. 

Component Patent Codes 
Engineering 
‘Relevance 

Rating’ 
Patent Code Description 

Component 

Scale-up 

Y02E 50/00 High 
Technologies for the production of fuel of non-fossil origin 

Biofuels, e.g. bio-diesel; Fuel from waste, e.g. synthetic alcohol 
or diesel 

Deployment 

Link to CCUS 
 

Renewable 
hydrogen 

 
 

Gasifier 
Feedstock 

C10J2300/0916 High Details of gasification process, Biomass 

 

Gasifier 
    

Syngas cleanup  

BioH2 and Bio-
SNG 

Water-Gas 
Shift (WGS) 
Reaction  

C12M21/04 Medium Bioreactors or fermenters for producing gas, e.g. biogas.  

 

 

Fischer-Tropsch 
Synthesis 

FT Catalyst 
C10G2300/1022 

 
C01B2203/062 

High 

Aspects relating to hydrocarbon processing covered by groups 
> Feedstock Materials > Fischer-Tropsch products 

 
Integrated processes for the production of hydrogen or synthesis 

gas (Hydrocarbon production e.g. Fischer-Tropsch process) 

  
FT reactor 

 
 

Upgrading  

Syngas to 
Methanol 

Overall Process C01B2203/061 High 
Integrated processes for the production of hydrogen or synthesis 
gas (Methanol production) 

 

Woody & 
Grassy Energy 
Crops -SRC & 

Miscanthus 

Breeding & 
Crop R&D 

A01C7/00 
 

A01C 15/00 
 

A01C 17/00 
 

A01C 19/00 
 

A01C 21/00 
 

A01D45/30 
 

A01H1/12 
 

Y02A 40/10 

Medium 

Sowing Seeds 
 

Fertiliser Distribution 
 

Fertisliser or seeders with centrifugal wheels 
 

Arrangements for driving working parts of fertilisers or seeders 
 

Methods of fertilising 
 

Harvesting of standing crops (of grass-seeds or like seeds).  
 

Processes for modifying genotypes > Processes for modifying 
agronomic input traits, (e.g. crop yield, drought, cold, pest 

resistence) 

      
 

Growing and 
harvesting, 
improving 
agronomics 

  

 

Novel Oil Crops 

Breeding & 
Crop R&D 

C11B1/00 High 
Production of fats or fatty oils from raw materials (under head 

of vegitable oils).  

 
 

Growing and 
harvesting, 
improving 
agronomics 

 

 

Lignocellulosic 
feedstock pre-
treatment & 
hydrolysis 

Pre-treatment 
C12P2201/00 

 
C08H8/00 

High 

Pretreatment of cellulosic or lignocellulosic material for 
subsequent enzymatic treatment or hydrolysis 

 
Macromolecular compounds derived from lignocellulosic 

materials 

  

Hydrolysis 

   

 

Lignocellulosic 
ethanol Overall process C12P7/10 High Preparation of Ethanol substrate containing cellulosic material 

  
 

Syngas 
fermentation 

Pre-treatment 
C12M21/04  

 
C10L3/08 

 
C10L3/10 

High 

Bioreactors or fermenters specially adapted or producing gas, 
e.g. biogas 

 
Production of synthetic natural gas 

 
Working-up natural gas or synthetic natural gas 

 

Reactor 
  

Bacteria 

 

 

Feedstock Pre-
treatment  

Pre-treatment 
C10G2300/10 

 
Y02P20/145 

Medium 

Feedstock materials (covers: waste, vegetal biomass, animal 
biomass, natural gas, gas hydrates, hydrocarbon fractions, 

Fischer-Tropsch etc) 
 

Feedstock of biological origin 

  
  

 

 

Digestion C12M21/04  Medium 
Bioreactors or fermenters specially adapted or producing gas, 

e.g. biogas 
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Table 4: Building Fabric Patent Codes 

Building Fabric 
Academic Benchmark: Noailly (2012). Improving the energy efficiency of buildings: The impact of environmental policy on technological 
innovation 

Component 
Patent 
Codes 

Engineering 
'Relevance 

Rating' 
Patent Code Description 

Pre-Construction 
and Design 

New Build 
and Existing Y02B10/00 High Integration of renewable energy sources in buildings.  
New Build 

Materials and 
Components 

New Build F24S 
 

E06B3/24  
 

E06B3/20 
 

E06B1/325 
 

E04B1/74 
 

E04B1/76 
 

E04F15/18 
 

E04D13/16 
 

F16L59/00  
 

F21Y2115/10 

High 

Solar Heat Collectors 
 

Double Glazing 
 

Vinyl wind frame 
 

Thermal Break between Frames 
 

Insulation materials 
 

Heat insulation only 
 

Floor Insulation 
 

Roof Insulation 
 

Thermal insulation of pipes 
 

LEDs 

(Some 
retrofits) 

New Build 
and Existing 

Build Process 
New Build 
and Existing 

Y02B80/00 High 
Architectural or constructional elements improving the thermal 

performance of buildings 

Building 
Operation 

New Build 
and Existing 

Y02B90/00 High 
Enabling technologies or technologies with a potential or 

indirect contribution to GHG emissions mitigation (Fuel cells 
in buildings & Smart Grids for buildings) 

All 
New Build 

and Existing 
Y02B High 

climate change mitigation technologies related to buildings, 
e.g. housing, house appliances or related end-user applications 
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Table 5: Carbon Capture, Use & Storage patent codes 

Carbon Capture, Use & Storage 
Academic Benchmark: Magee et al (2019) Quantification of technological progress in greenhouse gas (GHG) capture and mitigation using patent 
data 

Component 
Patent 
Codes 

 Engineering 
'Relevance 

Rating ' 
Patent Code Description 

Power 

Gas post-combustion 
capture 

Y02C20/00 
 

B01D53/00 
  

High 
  

Capture or disposal of greenhouse gases 
 

Separation of gases or vapours; Recovering vapours of 
volatile solvents from gases; Chemical or biological 

purification of waste gases, e.g. engine exhaust gases, 
smoke, fumes, flue gases, aerosols 

  

Gas pre-combustion 
capture 

Gas Oxy-combustion 
capture  

Y02E20/18 High 
Integrated gasification combined cycle [IGCC], e.g. 
combined with carbon capture and storage [CCS] 

Solid fuel Post- 
combustion capture  

Covered by 
Y02C20/00 

High   

Solid fuel Post- 
combustion capture  

Covered by 
Y02C20/00 

High   

Solid fuel Pre-combustion 
capture  

Covered by 
Y02C20/00 

High   

Solid fuel Oxy-combustion  
Covered by 
Y02C20/00 

Medium   

CO2 Storage: Infrastructure 
& injection wells  

Y02P90/70 High 
Combining sequestration of CO2 and exploitation of 

hydrocarbons by injecting CO2 or carbonated water in oil 
wells 

Industry 

Cement  Y02P40/18 High Production of cement - Carbon capture and storage 

Chemicals Y02P20/151 High 
Technologies relating to chemical industry - Reduction of 

GHG emissions e.g. CO2 

Iron & steel Y02P10/122  High 
Technologies relating to metal processing - by capturing 

or storing  CO2 

Refining B01D53/00 Medium 

Separation of gases or vapours; Recovering vapours of 
volatile solvents from gases; Chemical or biological 

purification of waste gases, e.g. engine exhaust gases, 
smoke, fumes, flue gases, aerosols, 

Cross-cutting  Y02P70/10  Medium Final consumer goods - Greenhouse gas capture.  
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Table 6: Heating & Cooling Patent Codes 

Heating & Cooling 
Academic Benchmark: Renaldi (2021) et al. Patent landscape of not-in-kind active cooling technologies between 1998 and 2017 

Component 
Patent 
Codes 

 Engineering 
‘Relevance Rating’ Patent Code Description 

Heat pumps 

Heat source  

F25B30/00 High Heat Pumps 

System  

Installation 

Integration 
O&M 

Installation 

Heat networks 

Design 

Y02B30/00 
 

Y02A30/27 
 

C09K5/00 

High 

Energy efficient heating, ventilation or air conditioning [HVAC] 
 

Relating to heating, ventilation or air conditioning [HVAC] 
technologies 

 
Heat-transfer, heat-exchange or heat-storage materials, e.g. 
refrigerants; Materials for the production of heat or cold by 

chemical reactions other than by combustion 

Installation 
Connection to 
heat user 

Interface with 
heat user 

Heat storage 

Heat source & 
sink 

F24S High Solar Heat Collectors 

Heat store 
Y02E60/14 

 
F24H7/00 

High 

Thermal energy storage 
 

Storage heaters, i.e. heaters in which energy is stored as heat in 
masses for subsequent release 

Cooling 

Main Unit  

F24F 
 

F25B 
High  

air-conditioning; air-humidification; ventilation; use of air currents 
for screening 

 
refrigeration machines, plants or systems; combined heating and 

refrigeration systems; heat-pump systems 
System 
Design 
Control 
O&M 
Storage 
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Table 7: Hydrogen Patent Codes 

Hydrogen 
Academic Benchmark: Baumann et al. (2021) Comparative patent analysis for the identification of global research trends for the case of battery 
storage, hydrogen and bioenergy 

Component Patent Codes 
 Engineering 
“Relevance 
Rating” 

Patent Code Description 

Natural Gas 
Reforming 

Integration with 
CCS Y02E60/30 

 
C01B2203/02 
 
C01B3/00 

High 

Hydrogen Technology, Storage & Distribution 
 
Processes for making hydrogen or synthesis gas (reforming & 
partial oxidation) 
 
Hydrogen; Gaseous mixtures containing hydrogen; Separation of 
hydrogen from mixtures containing it. 

Reformer 
Water-gas shift 
reactor 

Reformer 

Coal 
Gassification 

Integration with 
CCS 

C10J3/00 High 
Production of combustible gases containing carbon monoxide 
from solid carbonaceous fuels 

Gasifier + Gas 
Purification Unit 
Gasifier 
Air Separation Unit 
(ASU) 

Electrolysis 

Manufacturing 

C25B1/02 
 
Y02E60/36 (Covered 
by Y02E60/30) 
 
C25B11/00 

High 

Electrolytic production of inorganic compounds or non-metals > 
Hydrogen or oxygen > by electrolysis of water 
 
Hydrogen production from non-carbon containing sources, e.g. 
by water electrolysis 
 
Electrodes; Manufacture thereof not otherwise provided for 

Cell 
Cell 
Purification 
Equipment 
Purification 
Equipment 
System Integration 
Other Routes 
Other Applications 
Modelling 

Delivery 

Pressure Levels 

F25J1/00 
 
Y02E60/34 (covered 
by Y02E60/30) 
 
F17C5/02 

High 

Processes or apparatus for liquefying or solidifying gases or 
gaseous mixtures 
 
Hydrogen Distribution 
 
Methods or apparatus for filling containers with liquefied, 
solidified, or compressed gases under pressures > for filling with 
liquefied gases e.g. helium or hydrogen 

Safety 
Pipelines 
Tube Trailers 
Compression 
Liquefaction Process 
Alternative Carriers 
Odorants 
Sensors 

Storage 

Alternative 
Hydrogen Storage 

Y02E60/32 (Covered 
by Y02E60/30) 

High Hydrogen Storage 

Alternative 
Hydrogen Storage 
Cavern Topside 
Facility 
Underground 
Storage 

Refuelling 
Stations 

Purification 

C01B3/50 High 
Separation of hydrogen or hydrogen containing gases from 
gaseous mixtures, e.g. purification 

Unloading 
Equipment 
Verification 
Design 
Standardisation 

Fuel cells 

Manufacturing 

H01M8/00 
 
Y02E60/50 (Covered 
by Y02E60/30) 

High 
Fuel cells; Manufacture thereof 
 
Fuel cells 

Manufacturing 
SOFC 
SOFC 
PEMFC 
PEMFC 
Design 
Grid Services 
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Table 8: Industrial Clean Innovation Patent Codes 

Industry 
Academic Benchmark: N/A 

Component 
Patent 
Codes 

 Engineering ' 
Relevance Rating ' 

Patent Code Description 

Chemicals 

Efficiency 
improvements 

Y02P20/00 High 

Chemical Industry, includes:  
- Process Efficiency 

- Feedstocks 
- Reduction of GHG emissions 

- Energy Recovery 
- Recycling catalysts/materials 

Low-carbon 
substitutes 

Heat recovery and 
reuse 

Recovery and 
recycling  
Energy systems 
Alternative process 
technologies 
Clustering 

Food & drink 

Efficiency 
improvements 

Y02P80/00 High 
Climate change mitigation technologies for sector-wide 

applications (note: not specific to food & Drink, but relevant for 
all sectors hence included) 

Low-carbon 
substitutes 
Heat recovery and 
reuse 
Recovery and 
recycling  
Energy systems 
Alternative process 
technologies 
Clustering 

Iron & steel 

Efficiency 
improvements 

Y02P10/00 High 

Technologies related to metal processing: 
 

- Reduction in GHGs 
- using alternative fuels 

-using renewables 
recycling 

- process efficiency 

Low-carbon 
substitutes 
Heat recovery and 
reuse 
Recovery and 
recycling  
Energy systems 
Alternative process 
technologies 
Clustering 

Cement 

Efficiency 
improvements 

Y02P40/10  High 

Production of Cement: 
 

- energy efficiency 
- Fuels from renewables 

- CCS 
- Optimizing production methods 

Low-carbon 
substitutes 
Heat recovery and 
reuse 
Recovery and 
recycling  
Energy systems 
Alternative process 
technologies 
Clustering 

Pulp & paper 

Efficiency 
improvements 

D21 Medium paper-making; production of cellulose 

Low-carbon 
substitutes 
Heat recovery and 
reuse 
Recovery and 
recycling  
Energy systems 
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Alternative process 
technologies 
Clustering 

Glass 

Efficiency 
improvements 

Y02P40/50 High 
Glass production, e.g. reusing waste heat during processing or 

shaping; improving yield and rejection rates 

Low-carbon 
substitutes 
Heat recovery and 
reuse 
Recovery and 
recycling  
Energy systems 
Alternative process 
technologies 
Clustering 

Ceramics 

Efficiency 
improvements 

Y02P40/60  High 
Production of ceramic materials or ceramic elements, e.g. 

substitution of clay or shale by alternative raw materials, e.g. 
ashes 

Low-carbon 
substitutes 

Heat recovery and 
reuse 
Recovery and 
recycling  
Energy systems 

Alternative process 
technologies 

Clustering 
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Table 9: Nuclear Fission Patent Codes 

Nuclear Energy 

Academic Benchmark: N/A 

Component Patent Codes 
Engineering 
‘Relevance 

Rating’ 
Patent Code Description 

Mining, Processing, Enriching, Fabricating 

Y02E30/00 

High 

Energy Generation of Nuclear Origin 

All of G21 (excluding G21J Nuclear 
Explosives) 

NUCLEAR PHYSICS; NUCLEAR 
ENGINEERING 

CAPEX – Components and systems 
Covered by G21 

High Additive manufacturing technology 

B33Y 

CAPEX – Construction and materials Covered by G21 High   

CAPEX – Construction installation and commissioning Covered by G21 Medium   

Operations and Maintenance Covered by G21 Medium   

Decommissioning Covered by G21 Medium   

Waste Management Covered by G21 High   

Regulatory Covered by G21 Medium   

 

 

Table 10: Offshore Wind Patent Codes 

Offshore Wind 
Academic Benchmark: Johnstone (2010) Renewable energy policies and technological innovation: evidence based on patent counts 

Component Patent Codes 
 Engineering 
‘Relevance 

Rating’ 
Patent Code Description 

Floating 
wind: 

Moorings B63B 21/00 High Tying-up; Shifting, towing, or pushing equipment; Anchoring 

Floating 
Foundations 

B63B 2035/446 High 
Floating structures carrying electric power plants for 

converting wind energy into electric energy 

Dynamic 
Cables 

H01B7/12 
H01B7/045 

High 

Floating cables,  
Flexible cables, conductors, or cords, e.g. trailing cables 
attached to marine objects e.g. buoys,  
diving equipment, aquatic probes, marine towline 

Turbines 
Y02E10/70 

F03D 
F05B 2240/21 

High 
Energy generation through renewable Energy sources (wind), 
Wind motors, control and rotation axis…etc, 
Components for wind turbines 

Foundations 

Foundation 
Optimisation E02D27/00 

 
E02D27/425 

High Foundations as substructures New 
Foundation 
Design 

Advanced Wind Modelling G06F 30/00 Medium Computer Aided Design 
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Balance of 
Plant 

(Transmissio
n) 

Longer 
Distance 
Transmission 

Y04S10/00 
 

Y02E60/60 
 

H02J 3/36 
 

H02J 2003/365 
 

H02J 13/00034 

Medium 

System supporting electrical power generation, transmission 
or distribution, 
 
Arrangements for transfer of electric power between AC 
networks or generators via a high voltage DC link (HVDC), 
 
Arrangements for transfer of electric power between ac 
networks via a high-tension dc link, 
 
Equipment being or involving an electric power substation 

Grid Integration 

Grid Layout 

Array Cables 
HVDC 
Substations 
Substation Co-
location 

Operations & 
Maintenance 

Remote Access 

F03D 17 
 

Y02P 80/00 
 

H02J 13/365 
 

G05B 13/00 

High 

Monitoring or testing of wind motors, e.g. diagnostics, 
 
Climate change mitigation technologies for sector-wide 
applications,  
 
Adaptive control systems, systems automatically adjusting 
themselves to have a performance which is optimum 
according to some preassigned criterion. 

Remote O&M 
O&M 
Optimisation 

Installation 
(and logistics) 

Advanced 
Lifting F03D 9/00 

 
B63B 2035 

 
E03D 27 

High 

Vessels or similar floating structures specially adapted for 
specific purposes and not otherwise provided, 
 
Wind motors specially adapted for installation in particular 
locations. 

Innovative 
Installation 
Techniques 
Assembly 

Energy 
storage 

Offshore Wind 
Energy Storage Y02E 70/30 

 
F03D 9/10 

Medium 
Systems combining energy storage with energy generation of 
non-fossil origin. Alternative 

Energy Storage 

Decommissio
ning & End 

of Life 

Decommissioni
ng 

F05B 2240 Medium Component 
Repowering 
Life Extension 

 

 

Table 11: Smart Systems Patent Codes 

Smart Systems 

Academic Benchmark: N/A 

Component 
Patent 
Codes 

 Engineering 
'Relevance 

Rating ' 
Patent Code Description 

Smarter 
markets 

Market platforms and 
aggregation 

Y04S50/00 

High 

Market activities related to the operation of systems integrating 
technologies related to power network operation and 

communication or information technologies 

    

Y04S 

systems integrating technologies related to power network 
operation, communication or information technologies for 
improving the electrical power generation, transmission, 

distribution, management or usage, i.e. smart grids 

Demand side 
response 

DSR – Homes/ 
buildings 

covered by 
Y04S 

High   

DSR – EV integration 
covered by 

Y04S 
High   
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Electricity 
storage 

Bulk storage 

Y04S10/14 

High 

Energy Storage Units 

Y02E70/30 
Systems combining energy storage with energy generation of non-

fossil origin 

Distributed storage Y02E60/10 High Energy Storage Using Batteries 

Distributed storage Y02E60/16 High Mechanical energy storage, e.g. flywheels or pressurised fluids 

Fast response storage Y02E60/13 High Energy storage using capacitors 

Vector 
coupling 

 Power-to-gas 

C25B1/02 

Medium 

Electrolytic production of inorganic compounds or non-metals > 
Hydrogen or oxygen > by electrolysis of water 

Y02E60/36 
Hydrogen production from non-carbon containing sources, e.g. by 

water electrolysis 

C01C1/00 Ammonia; Compounds thereof 

Networks 

Networks 

H02H9/00 

High 

Emergency protective circuit arrangements for limiting excess 
current or voltage without disconnection 

Y02E40/00 
Technologies for an efficient electrical power generation, 

transmission or distribution 

Applications of HPC, AI 
and ML in data-rich 

energy systems 

G06F30/27 

Medium 

using machine learning, e.g. artificial intelligence, neural networks, 
support vector machines [SVM] or training a model 

G06F21/00 
Security arrangements for protecting computers, components 

thereof, programs or data against unauthorised activity 

 

Table 12: Solar Patent Codes 

Solar 

Academic Benchmark: Johnstone (2010) Renewable energy policies and technological innovation: evidence based on patent counts 

Patent 
Codes 

 Engineering 
'Relevance 

Rating' 
Patent Code Description 

Y02E10/50 High Photovoltaic [PV] energy 

H01L31/00 High 

Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter 
wavelength or corpuscular radiation and specially adapted either for the conversion of the energy 
of such radiation into electrical energy or for the control of electrical energy by such radiation; 
Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts 
thereof 
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H02S High 
Generation of electric power by conversion of infra-red radiation, visible light or ultraviolet light, 
e.g. using photovoltaic [pv] modules 

F24S High Solar Heat Collectors 

F03G6/00 High Devices for producing mechanical power from solar energy 

Note: Solar has been derived manually in the absence of an EINA framework specific to solar. All remaining steps have 
been the same 

 

Table 13: Tidal Stream Patents 

Tidal Stream 

Academic Benchmark: Johnstone (2010) Renewable energy policies and technological innovation: evidence based on patent counts. 

Component 
Patent 
Codes 

 Engineering ‘Relevance 
Rating’ 

Patent Code Description 

Structure & Prime 
Mover 

Y02E10/20 

High 

Hydro energy 

Y02E10/30 Energy from the sea, e.g. using wave energy or salinity gradient 

F03B3/00 machines or engines for liquids 

Power Take Off & 
Control 

F03B15/00 
High 

Controlling Machines or Engines for Liquids 

E02B9/08 Tide or wave power plants 

Foundations & 
Moorings 

B63B2035/4466 

High 

Floating Structures carrying electric power plants (for converting water energy 
into electrical energy). 

E02D27/52 Submerged foundations 

B63B21/00 Tying-up; Shifting, towing, or pushing equipment; Anchoring 

Connection 

H01B7/12 

Medium 

Floating cables, 

  Flexible cables, conductors, or cords, e.g. trailing cables attached to marine 
objectis e.g. buoys, 

H01B7/045 diving equipment, aquatic probes, marine towline 
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