Monetary policy rules and the inequality-augmented Phillips curve

Lilian Rolim¹ Laura Carvalho² Dany Lang³ March 30, 2023

¹University of Campinas, Brazil.

²Open Society Foundations.

³University Sorbonne Paris Nord, France.

Introduction

Model structure

Inflation-Unemployment-Inequality nexus

Flattening of the Phillips curve

MP reaction functions

Conclusions

 Standard macroeconomic literature addresses MP choices based on the relationship between unemployment and inflation. In this paper we add a third dimension to this relationship: income inequality;

- Standard macroeconomic literature addresses MP choices based on the relationship between unemployment and inflation. In this paper we add a third dimension to this relationship: income inequality;
- Low-wage workers are more exposed to cyclical fluctuations in unemployment (Clark and Summers, 1980, Kydland, 1984, Mitchell et al., 1985, Mueller, 2017, Solon et al. 1994, Okun et al., 1973);

- Standard macroeconomic literature addresses MP choices based on the relationship between unemployment and inflation. In this paper we add a third dimension to this relationship: income inequality;
- Low-wage workers are more exposed to cyclical fluctuations in unemployment (Clark and Summers, 1980, Kydland, 1984, Mitchell et al., 1985, Mueller, 2017, Solon et al. 1994, Okun et al., 1973);
- This heterogeneous effect can have distributive implications.

 We explore the inflation-unemployment-inequality nexus to investigate the role of changes in workers' bargaining power for the shape of the Phillips curve and expand the analysis of the trade-offs faced by the CBs;

- We explore the inflation-unemployment-inequality nexus to investigate the role of changes in workers' bargaining power for the shape of the Phillips curve and expand the analysis of the trade-offs faced by the CBs;
- To do so, we consider workers' heterogeneity in an extended version of the SFC-AB model by Rolim et al. (2023) with no long-term growth.

Introduction

Model structure

Inflation-Unemployment-Inequality nexus

Flattening of the Phillips curve

MP reaction functions

Conclusions

Consumption goods firms

 Production level depends on expectations and sales depend on market share (competitiveness);

Consumption goods firms

- Production level depends on expectations and sales depend on market share (competitiveness);
- Direct workers to produce goods:

$$L_{c,t}^{D,dir} = \left\lceil \frac{Q_{c,t}^d}{y^c} \right\rceil; \tag{1}$$

Note: $Q_{c,t}^d$ is the desired production level and y^c is the direct workers' productivity.

Consumption goods firms

- Production level depends on expectations and sales depend on market share (competitiveness);
- Direct workers to produce goods:

$$L_{c,t}^{D,dir} = \left\lceil \frac{Q_{c,t}^d}{y^c} \right\rceil; \tag{1}$$

Note: $Q_{c,t}^d$ is the desired production level and y^c is the direct workers' productivity.

 Indirect workers supervise those workers and manage the firm (overhead labor):

$$L_{c,t}^{D,ind} = \lfloor \rho_2 L_{c,t}^{D,dir} + \rho_3 L_{c,t}^{dir,fc} \rceil;$$
(2)

Note: $L_{c,t}^{dir,fc}$ is the demand for direct worker at full capacity utilization (proxy for production capacity).

• Prices are based on a mark-up rate over unit labor costs at the desired capacity utilization level;

- Prices are based on a mark-up rate over unit labor costs at the desired capacity utilization level;
- Mark-up rate has two components:
 - Evolution of market share (Dosi et. al, 2010, Dweck, 2006);
 - Evolution of unit labor costs (Bertola et al., 2012, Carlsson and Skans, 2012);

- Prices are based on a mark-up rate over unit labor costs at the desired capacity utilization level;
- Mark-up rate has two components:
 - Evolution of market share (Dosi et. al, 2010, Dweck, 2006);
 - Evolution of unit labor costs (Bertola et al., 2012, Carlsson and Skans, 2012);
- Investment is based on desired capacity utilization rate;

- Prices are based on a mark-up rate over unit labor costs at the desired capacity utilization level;
- Mark-up rate has two components:
 - Evolution of market share (Dosi et. al, 2010, Dweck, 2006);
 - Evolution of unit labor costs (Bertola et al., 2012, Carlsson and Skans, 2012);
- · Investment is based on desired capacity utilization rate;
- Firms exit the market depending on specific criteria.

• Sets interest rate for loans at the same level as CB (*i*);

- Sets interest rate for loans at the same level as CB (*i*);
- Grants credit to all creditworthy clients (C firms and households): evaluation depends on interest payments to revenue ratio relative to *R* threshold.

 Mohun's (2016) sociological division: direct workers, indirect workers and capitalists;

- Mohun's (2016) sociological division: direct workers, indirect workers and capitalists;
- Workers' desired wage:

$$w_{h,t}^{d,\$} = egin{cases} w_{h,t}^{d,*,\$}(1+\gamma) & ext{if } T_{h,t}^w = 0 \ w_{h,t}^{d,*,\$}(1-\gamma T_{h,t}^w) & ext{otherwise.} \end{cases}$$
 (3)

Note: $w_{h,t}^{d,*,\$}$ is the previous wage adjusted by inflation rate and $T_{h,t}^{w}$ is the number of unemployment periods.

- Mohun's (2016) sociological division: direct workers, indirect workers and capitalists;
- Workers' desired wage:

$$w_{h,t}^{d,\$} = egin{cases} w_{h,t}^{d,*,\$}(1+\gamma) & ext{if } T_{h,t}^w = 0 \ w_{h,t}^{d,*,\$}(1-\gamma T_{h,t}^w) & ext{otherwise.} \end{cases}$$
 (3)

Note: $w_{h,t}^{d,*,\$}$ is the previous wage adjusted by inflation rate and $T_{h,t}^{w}$ is the number of unemployment periods.

- Mohun's (2016) sociological division: direct workers, indirect workers and capitalists;
- Workers' desired wage:

$$w_{h,t}^{d,\$} = \begin{cases} w_{h,t}^{d,*,\$}(1+\gamma) & \text{if } T_{h,t}^w = 0 \\ w_{h,t}^{d,*,\$}(1-\gamma T_{h,t}^w) & \text{otherwise.} \end{cases}$$
 (3)

Note: $w_{h,t}^{d,*,\$}$ is the previous wage adjusted by inflation rate and $T_{h,t}^{w}$ is the number of unemployment periods.

• Consumption depends on income (class-specific propensity to consume) and on emulation consumption (average consumption of class above).

Inflation targeting regime:

$$i_{t} = i_{t-1} \{ 1 + \lambda_{1} (\hat{\hat{p}}_{t-1} - \hat{p}^{T}) - \lambda_{2} [(1 - \bar{\eta})_{t-1} - (1 - \eta)^{T}] \}$$
(4)

Note: $\hat{\bar{p}}_{t-1} - \hat{p}^T$ is the inflation gap and $(1 - \bar{\eta})_{t-1} - (1 - \eta)^T$ is the unemployment gap.

Inflation targeting regime:

$$i_{t} = i_{t-1} \{ 1 + \lambda_{1} (\hat{\hat{p}}_{t-1} - \hat{p}^{T}) - \lambda_{2} [(1 - \bar{\eta})_{t-1} - (1 - \eta)^{T}] \}$$
(4)

Note: $\hat{\bar{p}}_{t-1} - \hat{p}^T$ is the inflation gap and $(1 - \bar{\eta})_{t-1} - (1 - \eta)^T$ is the unemployment gap.

Wage setting:

$$w_{f,t}^{j,\$} = (1 - \phi^j \eta_{j,t-1}) w_{f,t}^{j,d,\$} + \phi^j \eta_{j,t-1} w_{f,t}^{j,s,\$}$$
(5)

Note: $w_{f,t}^{j,d,\$}$ is firms' desired wage, $w_{f,t}^{j,s,\$}$ is workers' desired wage, ϕ^j is the class-specific parameter, and $\eta_{j,t-1}$ is the class-specific employment rate. $\phi^j \eta_{j,t-1}$ is the **class-specific bargaining power**.

Introduction

Model structure

Inflation-Unemployment-Inequality nexus

Flattening of the Phillips curve

MP reaction functions

Conclusions

Inflation-Unemployment-Inequality nexus

 How do the cyclical properties of employment and income distribution lead to the inflation-unemployment-inequality nexus?

Inflation-Unemployment-Inequality nexus

- How do the cyclical properties of employment and income distribution lead to the inflation-unemployment-inequality nexus?
- Analysis is based on stylized facts concerning key variables which are reproduced by the model (validation).

Inflation-Unemployment-Inequality nexus

- How do the cyclical properties of employment and income distribution lead to the inflation-unemployment-inequality nexus?
- Analysis is based on stylized facts concerning key variables which are reproduced by the model (validation).
- Model is simulated for 500 periods (200 transient periods and 300 considered periods);
- 100 Monte Carlo runs per simulation configuration.

Cyclical behavior of macroeconomic series

Workers' heterogeneity

Unemployment rate per class

Wage share per class

Phillips curve

Unemployment-Inequality curve

Inequality-augmented Phillips curve

Generalized inequality-augmented Phillips curve

Introduction

Model structure

Inflation-Unemployment-Inequality nexus

Flattening of the Phillips curve

MP reaction functions

Conclusions

• Flattening of the Phillips curve is one of the puzzling phenomena in recent macroeconomic dynamics;

- Flattening of the Phillips curve is one of the puzzling phenomena in recent macroeconomic dynamics;
- Institutional and structural changes that reduced workers' bargaining power led to a lower sensitivity of nominal wage adjustments to the unemployment rate;

- Flattening of the Phillips curve is one of the puzzling phenomena in recent macroeconomic dynamics;
- Institutional and structural changes that reduced workers' bargaining power led to a lower sensitivity of nominal wage adjustments to the unemployment rate;
- This would also explain the worsening in income distribution (Stansbury and Summers, 2020);

- Flattening of the Phillips curve is one of the puzzling phenomena in recent macroeconomic dynamics;
- Institutional and structural changes that reduced workers' bargaining power led to a lower sensitivity of nominal wage adjustments to the unemployment rate;
- This would also explain the worsening in income distribution (Stansbury and Summers, 2020);
- Similar argument is made in a TANK model with Kaleckian features (Ratner and Sim., 2022);

- Flattening of the Phillips curve is one of the puzzling phenomena in recent macroeconomic dynamics;
- Institutional and structural changes that reduced workers' bargaining power led to a lower sensitivity of nominal wage adjustments to the unemployment rate;
- This would also explain the worsening in income distribution (Stansbury and Summers, 2020);
- Similar argument is made in a TANK model with Kaleckian features (Ratner and Sim., 2022);
- The PK tradition has long emphasized this (Setterfield, 2005, Setterfield and Blecker, 2022, Setterfield and Lovejoy, 2006, Summa and Braga, 2020);

For numerous reasons, institutional changes may have had a stronger effect on the **bargaining power of the low-wage workers**.

For numerous reasons, institutional changes may have had a stronger effect on the **bargaining power of the low-wage workers**.

We explore the implications of lower bargaining power of low-wage workers by applying a **one-time permanent negative shock** at t = 100 to ϕ^{dir} . For numerous reasons, institutional changes may have had a stronger effect on the **bargaining power of the low-wage workers**.

We explore the implications of lower bargaining power of low-wage workers by applying a **one-time permanent negative shock** at t = 100 to ϕ^{dir} .

Experiments configuration: direct workers' bargaining power shocks

Exp.	1	2	3	4	5	6
$\Delta \phi^{ m dir}$	0	-0.02	-0.04	-0.06	-0.08	-0.1

Income inequality

Wage share

Mark-up C sector

Wage share per class

Direct workers

Indirect workers

Income inequality

Wage Gini

Gross Income Gini

Macroeconomic variables

Inflation rate

Unemployment rate

Phillips curve

Introduction

Model structure

Inflation-Unemployment-Inequality nexus

Flattening of the Phillips curve

MP reaction functions

Conclusions

Changes in monetary policy reaction function

The inflation-unemployment-inequality nexus suggests that monetary policy management has important implications for inequality. The inflation-unemployment-inequality nexus suggests that monetary policy management has important implications for inequality. We explore this by comparing **dovish and hawkish** scenarios. The inflation-unemployment-inequality nexus suggests that monetary policy management has important implications for inequality. We explore this by comparing **dovish and hawkish** scenarios.

Experiments configuration: monetary policy reaction function parameters

Exp.	Baseline	Hawks	Doves
λ_1	1	1	0
λ_2	0.2	0	0.2

In all scenarios: $\hat{p}^T = 0.01$ and $u^T = 0.05$.

Macroeconomic and inequality variables

Introduction

Model structure

Inflation-Unemployment-Inequality nexus

Flattening of the Phillips curve

MP reaction functions

Conclusions

• Empirical regularities suggest the validity of the inequality-augmented Phillips curve;

- Empirical regularities suggest the validity of the inequality-augmented Phillips curve;
- Income inequality ought to be considered a relevant dimension when analyzing the macroeconomic effects of monetary policy and the Phillips curve in general.

Lilian Rolim, Laura Carvalho, and Dany Lang Contact: lilian.rolim@gmail.com

Funding by São Paulo Research Foundation (FAPESP, grant # 2018/21762-0) is acknowledged. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Inflation rate

Inflation rate

Baseline

Hawkish

Dovish

Unemployment rate

Baseline

Hawkish

Dovish

Parameters (1)

Symbol	Description	Value
Cymbol	consitivity of workers desired wage to employment rate	0.02
· 7	sensitivity of workers desired wage to employment rate	0.02
	entrant infins expected sales share of sector average sales (C sector)	0.5
$(1 - \eta)^{*}$	unemployment rate target	0.05
ΰ	employees turnover snare	0.05
λ_1	sensitivity of nominal interest rate to inflation gap	1
λ_2	sensitivity of nominal interest rate to unemployment gap	0.2
$\mu_{c,0}$	initial mark-up rate (C firms)	0.6
μ_k	mark-up rate (K firm)	0.5
ν_1	sensitivity of mark-up rate to market share (C firms)	0.01
ν_2	mark-up deviation persistence (C firms)	0.95
ν_3	sensitivity of mark-up deviation to unit costs (C firms)	0.2
ν_4	sensitivity of market share to competitiveness (C firms)	1
ρ_1	managers per direct workers (K firms)	0.16
ρ_2	indirect workers per direct worker (C firms)	0.085
ρ_3	indirect workers per direct worker at full capacity production (C firms)	0.065
ρ_4	number of capitalists per firm*	1
<i>Q</i> 1	initial ratio between direct workers wage and minimum wage	2.5
<i>Q</i> 2	initial ratio between indirect workers wage and direct workers wage	2.5
τ	tax rate on income	0.05
$\phi^{\textit{dir,ind}}$	sensitivity of workers' bargaining power to employment rate for direct and indirect workers respectively	(0.4, 0.4)
ω1,2,3,4	sensitivity of expected demand to past demand (C firms)	(0.4, 0.3, 0.2, 0.1)
C1	consumption emulation weight	0.12
$C_2^{dir,ind,cap}$	propensity to consume out of income (direct workers, indirect workers, capitalists)	(0.95, 0.85, 0.75)
i ₀	initial nominal interest rate	0.02
i ^{min}	minimum nominal interest rate	1e-07
$L_q^{dir,ind}$	workers hired as public servants *	(239, 39)
ms ^{min}	minimum market share to stay in the market (C firms)	0.0025

Parameters (2)

Symbol	Description	Value
N ^c	number of consumption goods firms	200
N ^{dir,ind,cap}	number of direct workers, indirect workers*, and capitalists*	(1696,286,201)
n ^{dir,ind}	percentage of direct and indirect workers in total population	(0.844, 0.142)
n ^g	proportion of public servants in total initial employment (direct workers)	0.16
n ^{IN}	desired share of inventories	0.1
n ^{s,dir,ind}	proportion of workers in survey	(0.15, 0.3)
n ^w	number of hiring rounds per open position	1.5
\bar{p}^{T}	inflation target	0.01
$Q_{c,0}^{fc}$	initial full capacity production (C firms)	80
Q_m^{fc}	machines production at full capacity	2.5
R	maximum interest payments to cash flow ratio	0.05
T^{c}	number of periods before a new firm can exit the market	10
T^i	number of periods for average variables in monetary policy reaction function	4
T^k	machines lifetime	20
и ^d	desired capacity utilization level	0.8
V	expansion investment speed of adjustment	0.2
$W_0^{min,\$}$	initial minimum wage	1
У ^с	productivity at C sector	10
У ^к	productivity at K sector	10