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1. Introduction 

With the recent proliferation of data collection and uses in the digital economy, the understanding 

and statistical treatment of data stocks and flows is of interest among compilers and users of national 
economic accounts. During the last revision of the System of National Accounts (SNA) (United Nations 
2010), which is the international standard for national economic accounts, the treatment of data stocks 
and flows was a topic of discourse among statistical agencies and international organizations, who 

ultimately settled on the treatment of databases as a subcategory of software in capital formation 

(Ahmad 2004; Ahmad 2005). Current global efforts for the next revision of the SNA, expected to be 

published in 2025, have a renewed focus on the valuation and recording of the information content of 
databases—i.e., the embedded data—in response to the presumed rapid increase in data stocks and 

flows over the last decade and longer. 

The value of data is implied in the profits and market values of some firms. In 2020, two of the largest 
global data firms – Alphabet Inc. (Google) and Meta Platforms Inc. (Facebook) – had a combined 

net income before tax of $81.3 billion, which amounted to 3.7 percent of U.S. corporate profits before 

tax. In November 2021, the combined market capitalization of the two firms was $2.9 trillion, which 

amounted to 7.5 percent of the market capitalization of all S&P 500 firms.1 While the value of data 

may be implied in these measures, data stocks and flows are not visible in national economic accounts 
under the current SNA treatment. Moreover, understanding and measuring the value of data presents 
challenges to economic statisticians. 

In this paper, we measure the value of own-account data stocks and flows for the U.S. business sector 
by summing the production costs of data-related activities implicit in occupations. Production costs 
include labor costs, capital costs, and intermediate consumption. To estimate production costs, we 

apply a markup to an estimate of the wage bill for data-related activities, which is consistent with the 

Bureau of Economic Analysis (BEA) methodology for own-account software. Our method augments the 

traditional sum-of-costs methodology for measuring other own-account intellectual property products 
(IPPs) in national economic accounts by proxying occupation-level time-use factors using a machine 

learning model and the text of online job advertisements (Blackburn 2021). 

The occupation-level time-use factors can be decomposed into two components: (1) the fraction of 
jobs in an occupation engaged in qualifying activities based on data-relevant skills revealed in the job 

advertisement and (2) the average share of time allocated to the data-relevant activities. Using online job 

advertisements from Burning Glass Technologies (BGT), skills in the BGT taxonomy that are relevant 

1Net income before tax comes from each firm’s 10-K filings with the U.S. Securities and Exchange Commission for 
year-end December 31, 2020. Corporate profits come from BEA’s National Income and Product Accounts table 6.17D. 
Market capitalizations come from YCHARTS (GOOG, FB) as of November 19, 2021. 

https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_list=243&series=q&first_year=2002&last_year=2021&scale=-99&categories=survey&thetable=
https://ycharts.com/companies/GOOG
https://ycharts.com/companies/FB
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to data-related activities are identified, including data entry, storage, analysis, and management. The 

fraction of jobs in an occupation engaged in qualifying activities is given by the fraction of BGT job 

advertisements that contain at least one of the data-relevant skills. The average time allocation is 
based on the distance of an occupation to known data-intensive occupations that serve as “landmark” 

occupations (e.g., data entry keyers or statisticians). A doc2vec model is then trained on the job 

advertisement text for each occupation to obtain a numerical representation of what the occupation-
level job postings convey. Using the numerical representation, occupation-level pair-wise distances are 

obtained to measure how “close” or similar an occupation is to the landmark occupations. The product 
of the similarity to a landmark occupation and the ratio of job openings with identified data-relevant 
skills serves as the proxy for the occupation-level time-use factor. We then apply the time-use factors 
to the product of average annual wages and annual number of employees by occupation at the 3-digit 
North American Industry Classification System (NAICS) level available from the U.S. Bureau of Labor 
Statistics (BLS) Occupational Employment and Wage Statistics (OEWS) to calculate the wage bill (i.e., 
wages and salaries, excluding employee benefits) for data-related activities. 

The main challenges for measurement of own-account data stocks and flows that we address in the 

paper are similar to challenges imposed by other own-account IPPs that are already included in capital 
formation in the SNA and the U.S. National Income and Product Accounts (NIPAs). First, the scope 

of capital formation is not yet well-defined for own-account data. Second, own-account data and other 
own-account IPPs are at risk of multiple counting from sources such as overlap among categories of 
IPPs and non-rival use of data. A third challenge is what proportions of the sum-of-costs should be 

accounted for by labor costs, capital costs, and intermediate consumption in light of the role that capital 
services play in the collection, storage, analysis, and management of data. Finally, own-account data 

are not transacted in active markets, which means there are no observed transactions that are useful for 
measuring prices and depreciation. We discuss each of these challenges and our approach to addressing 

them in section 4 of the paper. 

Our experimental results indicate that annual current-dollar investment in own-account data assets for 
the U.S. business sector grew from $84 billion in 2002 to $186 billion in 2021, which yields an average 

annual growth rate of 4.2 percent. Cumulative current-dollar investment for the period 2002–2021 was 
$2.6 trillion. Annual current-dollar investment in own-account data for the period averaged 1.0 percent 
as a share of business sector value-added, 5.0 percent as a share of investment in private fixed assets, 
and 20.2 percent as a share of investment in IPPs. Likewise, the historical-cost net stock of data assets 
grew from $205 billion in 2002 to $421 billion in 2021, which yields an average annual growth rate of 
3.8 percent. Using an experimental price index that we developed for data, the average annual growth 

rate in real data investment over the period was 7.5 percent, which yields an average annual increase in 

real business sector value-added growth of 4 basis points and an increase in growth in real investment 
in IPPs of 31 basis points. In contrast, growth in real data investment is lower than growth in real 
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investment in software, which yields a decline in average annual growth of real investment in software of 
26 basis points. For NAICS sectors, the largest dollar investments were made in Professional, Scientific, 
and Technical (PST) Services (NAICS 54), Manufacturing (NAICS 31-33), and Finance and Insurance 

(NAICS 52). The largest increases in average real value-added growth by NAICS sector shows up for 
Management of Companies (NAICS 55) and PST Services (NAICS 54). 

The next section summarizes the SNA background on the treatment of own-account data stocks and 

flows and related literature. Section 3 provides details on our measurement, including source data and 

methodologies. Section 4 identifies challenges associated with measurement of own-account IPPs and 

how we address those challenges for own-account data. Section 5 reports our core experimental results 
and some additional experimental results of interest. Section 6 concludes. 

2. National Accounts Background and Related Literature 

2.1. System of National Accounts 

The 1993 version of the SNA includes only a brief paragraph on the inclusion of “large databases that 
the enterprise expects to use in production over a period of time of more than one year” as part of the 

computer software category of capital formation (United Nations 1993, paragraph 10.93). There is no 

mention of embedded information content (i.e., data) in SNA 1993. Leading up to the 2008 version of 
the SNA, an SNA group of statistical agencies and international organizations considered the inclusion of 
embedded data in capital formation. To guide the discussions, Ahmad (2004) outlined two components 
of databases—supporting software and data stored in the database—and summarized practical challenges 
that countries encounter while trying to implement the vague SNA 1993 recommendation. In light of 
the challenges, Ahmad (2005) described two definitions for databases considered by the SNA group. 
One definition included the value of the information content to be stored in databases as long as the 

information had a useful life of more than one year, and one definition did not include the value of the 

information content. The group recommended that the latter definition is preferable because the former 
definition would “open the door to the capitalization of knowledge” (ibid., p. 2). Based on the summary 

outlined in Ahmad (ibid.), the group primarily considered databases maintained by statistical agencies. 

The recommendation that was ultimately written into SNA 2008 includes databases and computer 
software as separate categories of intellectual property products in capital formation (United Nations 
2010, paragraphs 10.109–10.114). If a database is developed for own use, SNA 2008 recommends a sum-
of-costs approach to value the database. The sum-of-costs includes the cost of preparing data in a format 
that conforms to the database but excludes the cost of acquiring or producing the data. In addition, 
the sum-of-costs excludes the value of the database management system (DBMS), which is included 
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instead with computer software. If a database is developed for sale or for license, the value should be 

determined by the market price, which includes the value of the information content. Thus, SNA 2008 

recommends an inconsistent treatment for data in capital formation depending on whether a database 

is developed for own use or for sale or license. In addition, the value of data acquired or produced for 
inclusion in databases is not to be treated as intermediate consumption in the sum-of-costs approach 

for own-account databases, which is inconsistent with the inclusion of intermediate consumption in the 

usual sum-of-costs measurement. The overall conclusion drawn by the SNA group was that if data is 
an asset, it is a non-produced asset whose value should be limited in national accounts to measures of 
purchased goodwill. Thus, there should be no value of data reflected in production measures. 

2.2. U.S. National Accounts 

The U.S. national accounts are consistent with the SNA recommendations on intellectual property 

products, including computer software (U.S. Bureau of Economic Analysis 2020). Similar to general 
practice in other countries, the U.S. accounts do not include a separation between software and databases 
(i.e., the software that houses data) in published capital stock and flow measures. The value of any 

data included in purchased software is included in measures of investment and capital stock. The value 

of any data in own-account software is excluded from measures of investment and capital stock. 

BEA estimates three categories of software: (1) prepackaged, (2) custom, and (3) own-account. Bench-
mark estimates of prepackaged and custom software are determined using a commodity flow method 

based on receipts reported in the U.S. Economic Census for Software Publishers (NAICS 5112), Data Pro-
cessing and Hosting (NAICS 518), and Computer Systems Design (NAICS 5415). For non-benchmark 

years, estimates are based on receipts reported in the Census Bureau’s Service Annual Survey. Bench-
mark estimates of own-account software are determined using a sum-of-costs methodology based on 

wage data in the BLS OEWS for four occupations - Computer Programmers, Computer Systems An-
alysts, Software Developers, and Software Quality Assurance Analysts - and based on the Economic 

Census. For non-benchmark years, estimates are primarily based on the OEWS data. In addition to 

labor costs and intermediate consumption, own-account software includes a cost for capital services 
(Chute, McCulla, and Smith 2018). 

2.3. Related Literature 

Two strands of literature provide additional context for this paper. The first is literature on the value 

of data, which not only suggests that data has value but also suggests that the value of data may, 
at least in part, be a result of a production process rather than non-produced, which is the current 
perspective in national economic accounts. The second is emerging literature from statistical agencies, 
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international organizations, and other sources that is beginning to recognize the likelihood that some 

data are produced assets and to generate renewed focus for recording and valuing data stocks and flows. 

2.3.1. Value of Data 

Varian (2018) describes a data pyramid that is a variation of the data-information-knowledge-wisdom 

(DIKW) hierarchy introduced by Ackoff (1989) and subsequently used in information science and eco-
nomics (Rowley 2007; Boisot and Canals 2004). The data pyramid is used to illustrate the relationships 
among data that is stored as bits, information that is stored in documents, and knowledge that is stored 

in the human mind (Mokyr 2013). Related to the data pyramid is the data value chain presented in 

OECD (2013) and subsequently expanded in Moro Visconti, Larocca, and Marconi (2017). The data 

value chain illustrates a production process for data from an unstructured form that has very little value 

to a structured form that can be leveraged in a business model or other usage (Bakhshi, Bravo-Biosca, 
and Mateos-Garcia 2014). The stages of the chain include collection, storage, processing, distribution, 
and usage. The Moro Visconti, Larocca, and Marconi (2017) version of the data value chain focuses on 

business users at the last stage of the chain with the monetization of data via a business model, which 

may be data-dependent or data-neutral. Data-dependent business models, such as online platforms, 
rely heavily on data for sources of revenue and profits (Li, Makoto, and Kazufumi 2019; Nguyen and 

Paczos 2020). Data-neutral firms do not depend on data for revenue but can still realize benefits from 

data that help improve existing products or offer new products. The OECD (2013) version of the data 

value chain includes business users and also includes government, non-profit, and household users. 

Hughes-Cromwick and Coronado (2019) outline the value of U.S. government data to business decision-
making. Likewise, the value of household data is evident in literature on the economics of personal 
privacy, which has re-emerged as an area of interest as summarized in Acquisti, Taylor, and Wagman 

(2016). 

Farboodi and Veldkamp (2021) construct a growth model of the data economy in which data is an 

information asset that contributes to growth by reducing uncertainty and helping firms choose better 
production techniques via forecasts. The model demonstrates short-run increasing returns due to a 

feedback loop within the firms. However, long-run diminishing returns result in the absence of traditional 
technological progress in the Solow (1956) growth model because better forecasts are not a tool that 
can logically sustain long-run growth. In contrast to Farboodi and Veldkamp (2021), Jones and Tonetti 
(2020) model data contributing directly to productivity and generating long-run growth. 
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2.3.2. Recording and Valuing Data Stocks and Flows 

Under the second strand of literature, statistical agencies and international organizations are renewing 

efforts to introduce guidelines for recording and valuing data as a produced asset in national economic 

accounts. Ahmad and van de Ven (2018) and Reinsdorf and Ribarsky (2020) provide background on 

the historical treatment of data stocks and flows and offer preliminary thoughts on moving forward 

with changes to the SNA. Rassier, Kornfeld, and Strassner (2019) also summarize considerations for 
treatment of data stocks and flows and present cursory estimates of data-related flows based on official 
statistical sources for the U.S. economy. Statistics Canada (2019b) carefully defines and categorizes 
data, databases, and data science and presents experimental estimates for each category using a sum-
of-costs measurement methodology for the Canadian economy. The Australian Bureau of Statistics and 

the Netherlands Central Bureau of Statistics have compiled measures of data stocks and flows based 

on the Canadian methodology. Each of these previous efforts has resulted in preliminary guidance that 
is currently being considered by the SNA community (United Nations Inter-Secretariat Working Group 

on National Accounts 2022). 

Goodridge, Haskel, and Edquist (2021) are the first to provide a harmonized set of cross-country esti-
mates for data assets in European Union countries and then estimate the contribution of data capital 
deepening to growth in productivity. They find that about 43 percent of employment engaged in capital 
formation of software and data is unaccounted for in measured own-account software and databases, and 

the missing piece of capital formation is growing faster than the measured piece. Goodridge, Haskel, and 

Edquist (ibid.) also provide a summary of previous economic literature on information and knowledge. 

3. Data and Methods 

The SNA recommendation for valuing IPPs that lack an observable market transaction is a cost-based 

approach including labor costs, capital costs, and intermediate consumption. For market producers, 
capital costs include a net return to fixed assets (or “normal profit”) in addition to consumption of fixed 

capital. Our strategy builds on BEA’s sum-of-costs methodology for own-account software. Estimates 
of aggregate production costs for data-related output have the general form 

𝐶𝑖,𝑡 = 𝛼 ∑ 𝜏𝜔𝑊𝜔,𝑖,𝑡𝐻𝜔,𝑖,𝑡 (1) 

where for each occupation 𝜔, industry 𝑖, and year 𝑡, we calculate the wage bill by multiplying the annual 
number of employees (𝐻𝜔,𝑖,𝑡) by the average annual wage (𝑊𝜔,𝑖,𝑡) and an occupation-specific time-use 

factor (𝜏𝜔) that reflects the time-effort that the occupation allocates to data-related activities. The 

parameter 𝛼 is a markup that reflects employee benefits (not included in the wage bill), capital costs, 
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and intermediate consumption, which yields the full production costs. The rest of this section discusses 
our estimation of each of the elements in equation 1. 

3.1. Employment and Wage Data 

The U.S. Bureau of Labor Statistics (BLS) has 12 survey programs that provide information on pay 

and benefits. We prioritize having wage data at an occupational level specific enough to capture the 

activities of interest.2 The BLS Occupational Employment and Wage Statistics (OEWS) program 

produces employment and wage estimates annually for around 800 occupations and is well-suited for 
our purpose. In addition, the historical data temporal coverage dates back to the early 2000s, allowing 

us to generate a longer time series. 

Occupational data collected by the U.S. federal statistical system is generally collected, calculated, and 

disseminated based on the Standard Occupational Classification (SOC) system. Employees are assigned 

to an occupation based on the work they perform and not on their education or training. The OEWS 

data are an SOC-based occupational system that uses SOC codes to assign occupations at levels for 
which the data are published. Some SOC codes are aggregated into a single OEWS occupational code 

for reporting purposes. 

The OEWS system allows the data to be linked to other systems such as the U.S. Department of Labor 
(DOL) Occupational Information Network (O*NET) (Hopson 2021). The OEWS program reports data 

using the North American Industry Classification System (NAICS). We use estimates at the NAICS 3-
digit subsector levels that are representative of privately-owned business establishments, which excludes 
government and nonprofit institutions serving households (NPISH).3 

To generate data-related employment and wage estimates for 2002–2021, we use model-based estimates 
(Dey, S. Piccone Jr, and Stephen M. Miller 2019) for 2015–2020 and official estimates for the period 

2002–2014 and 2021 (U.S. Bureau of Labor Statistics 2021). We use estimates of the average annual 
wage and annual number of employees for privately-owned establishments at the NAICS 3-digit level. 
The wage series use several versions of the underlying occupational and industry systems across time. 
In order to obtain a consistent time series, we use the OES 2021 hybrid structure crosswalk and rely on 

the OES 2010–2011 classification crosswalk to account for the temporary codes in those two years. For 
example, if multiple occupations are aggregated in the latest taxonomy (OEWS 2021), the estimated 

average annual wage is an average of available wage data weighted by the employment estimates for the 

2https://beta.bls.gov/comparison-matrix 
3The sectors and subsectors identified as NPISH include Educational Services (NAICS 61), Health Care and Social 

Assistance (NAICS 62), Arts, Entertainment and Recreation (NAICS 71), and Religious, Grantmaking, Civic, Professional, 
and Similar Organizations (NAICS 813). 

https://www.bls.gov/oes/soc_2018.htm
https://www.bls.gov/oes/2010_and_2011_oes_classification.xls
https://beta.bls.gov/comparison-matrix
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corresponding occupations. In cases when an occupation is attributed to multiple 2021 codes, which 

may occur due to special hybrid-code estimates, those are equally distributed among the corresponding 

2021 codes. The resulting series provide us the employment and wage numbers by occupation, year, 
and industry. 

3.2. Time-Use Factors 

Time-use factors are important to the sum-of-costs methodology as they provide measures of time-effort 
allocated to the activities of interest such as data-related activities. Time-use factors have been used to 

examine quality of service, job satisfaction, and other outcomes in various domains such as education, 
health, and security. For example, the OECD Teaching and Learning International Survey (TALIS) 
collects data on the time-use allocation of teachers among categories: (1) Administrative and leadership 

tasks and meetings, (2) Curriculum and teaching-related tasks and meetings, (3) Student interactions, 
(4) Parent or guardian interactions, and (5) Interactions with local and regional community, business 
and industry. In the area of health, studies have collected information on the share of time physicians 
spend on direct care with patients or administrative work (Woolhandler and Himmelstein 2014). While 

most data on time-use allocations is collected in surveys, other methods include direct observation of 
the work performed such as rides with police officers (Parks et al. 1999). For data as an asset, we 

estimate time-use factors using a methodology developed in Blackburn (2021) for data-relevant skills, 
which are reflected in activities including entry, storage, analysis, and management of data. Examples of 
specific activities include data cleaning, data wrangling, data manipulation, and data science. Following 

Blackburn (ibid.), the time-use factor 𝜏 can be decomposed as follows 

𝑙𝜔 𝜏𝜔 = 𝑠𝜔
∗ = 𝜌𝜔𝑠𝜔

∗ (2)
𝐿𝜔 

where the time-use factor for occupation 𝜔 is the product of the fraction of employees that engage in 

activities of interest (𝜌𝜔) and an estimate of how much time the occupation allocates to the activities 
(𝑠∗

𝜔). Without time-use factors, the sum-of-costs methodology relies on identifying specific occupations 
assumed to best embody the activities of interest. 

3.2.1. Online Job Advertisements 

The method uses online job advertisement data from Burning Glass Technologies (BGT) to estimate 

time-use factors for a broad range of occupations.4 The data not only contain the job advertisement 
text but also enhancements, including deduplication, identified skills, degree requirements, location, 

4Online job advertisements have been used in applications related to labor, education, and credential research. Examples 
of online job advertisement providers include Burning Glass Technologies, Indeed, and the National Labor Exchange (NLx) 
Research Hub. These providers collect job postings in “real-time” from various websites. 



9 

and information on the employer (e.g., industry). BGT also uses their own-developed occupational 
auto-coders to identify the occupation of the job advertisement.5 

Lancaster, Mahoney-Nair, and Ratcliff (2021) look at the data quality, suitability, and representativeness 
of BGT job advertisement data for research purposes. The study confirms several findings in the literature 

such as the over-representation of certain occupation groups in the BGT job advertisement data. One 

aspect of the BGT data that distinguishes them from other alternatives is the focus on skills rather than 

occupations as the main unit of analysis for understanding the job market (Burning Glass Technologies 
2019). The BGT skills taxonomy includes over 17,000 skills as well as various skill properties such as 
whether a skill refers to data or software (or both). 

The strategy uses the BGT job advertisement data to estimate equation 2. The first component refers 
to the fraction of employees in an occupation who engage in data-related activities. The concept is 
operationalized with the following definition: 

∑𝐿𝜔 

𝑗=1 
𝟙 (𝑦𝑗̂ )

𝜌𝜔̂ = (3)
𝐿𝜔 

where 𝟙 (𝑦𝑗̂ ) denotes ∃ 𝑠 ∶ 𝑠 ∈ 𝑆 meaning 𝑠 is a subset of skills identified for job advertisement 𝑦𝑗, and 

𝑆 is the set of skills identified as data relevant. In other words, a ratio is computed as the fraction of 
job advertisements with at least one of the data-relevant skills out of all job advertisements (𝐿𝜔) for 
each occupation. Blackburn (2021) manually identified 203 BGT skills that are data relevant, which 

excludes any skill deemed a software skill as a way to minimize potential overlap with capital formation 

in software. The top 80 data-relevant skills by frequency are presented in table 1. 

A two-step approach is used to estimate (𝑠∗
𝜔). The first step identifies the occupations with the highest 

rate of employees engaged in data-related activities (𝜌𝜔) based on the BGT skills. Occupations with a 

𝜌𝜔 of at least 0.50 are denoted “landmark” occupations and assigned full time-effort. 

5The NLx Research Hub uses the O*NET SOC Code AutoCoder™ (https://www.onetsocautocoder.com). 

https://www.onetsocautocoder.com
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Table 1. BGT skills identified as data relevant 

3D Seismic Data Data Dictionary System 
Accenture Data Governance Framework Data Documentation 
Advanced Data Entry Data Encryption 
Assessment Data Data Engineering 
Big Data Data Entry 
Big Data Analytics Data Entry Prioritization 
Billing Data Analysis Data Evaluation 
Biological Database Search Data Exploitation 
Business Intelligence Data Modeling DFHSM 
Cascading Big Data Applications Data Flow Diagrams (DFDs) 
Climate Data Analysis Data Governance 
Clinical Data Abstracting Data Integration 
Clinical Data Analysis Data Integrity 
Clinical Data Exchange Data Lakes / Reservoirs 
CDISC Data Loss Prevention 
Clinical Data Management Data Management 
Clinical Data Review Data Management Platform (DMP) 
Clinical Data Understanding Data Manipulation 
Clinical Database Development Data Mapping 
Clinical Research Data Accuracy and Integrity Data Migration 
Cloud Security Data Protection And Privacy Data Mining 
Columnar Databases Data Mining Industry Knowledge 
Conceptual Data Models Data Modeling 
Customer Data Integration Data Modeling Star / Snowflake Schema 
Customer Service Database Data Multiplex System (DMS) 
Data Acquisition Data Munging 
Data Acquisition Systems Data Operations 
Data Analysis Data Platform as a Service 
Data and Safety Monitoring Board Data Pre-Processing 
Data Architecture Data Privacy 
Data Archiving Data Protection Industry Knowledge 
Data Buffers Data Protection Planning 
Data Capture Data Protection Strategy 
Data Center Hardware Data Quality 
Data Cleaning Data Quality Assessment 
Data Collection Data Reports 
Data Communications Data Science 
Data compression Data Security 
Data Conversion Data Security Classification 

Note: Top 80 skills by frequency out of 203 data relevant skills identified manually (Blackburn 2021). 
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Table 2. Landmark occupations 

O*NET SOC 2010 Description Time-use factor 

43-9021.00 Data Entry Keyers 0.94 
15-1111.00 Computer and Information Research Scientists 0.77 
15-1141.00 Database Administrators 0.75 
15-1199.06 Database Architects 0.72 
19-1029.01 Bioinformatics Scientists 0.68 
19-4061.00 Social Science Research Assistants 0.67 
15-2041.00 Statisticians 0.66 
15-1199.07 Data Warehousing Specialists 0.63 
15-2041.01 Biostatisticians 0.63 
15-1199.08 Business Intelligence Analysts 0.61 
53-7073.00 Wellhead Pumpers 0.60 
19-3022.00 Survey Researchers 0.59 
43-9111.01 Bioinformatics Technicians 0.58 
43-9111.00 Statistical Assistants 0.54 
29-2092.00 Hearing Aid Specialists 0.54 
15-2041.02 Clinical Data Managers 0.54 
43-3021.01 Statement Clerks 0.50 

Note: For landmark occupations, the similarity to the nearest landmark is one, and thus the time-use factor 𝜏𝜔̂ 
is the same as 𝜌𝜔̂ . 

Table 2 shows the 17 occupations determined to be landmark occupations. Many of the occupations are 

obvious landmark candidates such as data entry keyers and various research and analyst occupations. 
Some of the occupations are less obvious as landmarks. For example, wellhead pumpers may not be an 

occupation immediately associated with data, but their job activities rely on monitoring and assessing 

data in order to act on that information promptly. For non-landmark occupations, 𝑠∗
𝜔 is estimated as 

the cosine similarity to the closest landmark occupation. Mathematically, 

𝑠∗
𝜔̂ = max { 

A𝜔 ⋅ A𝑤 (4)
𝑤 ∈ 𝕄 ‖A𝜔‖‖A𝑤‖

} 

where 𝕄 is the set of landmark occupations, 𝐴𝜔 (i.e., omega) is a numerical representation of occupation 

𝜔, and 𝐴𝑤 (i.e., double-u) is the mathematical representation of occupation 𝑤 (i.e., one of the landmark 

occupations). The effective time-use factor then becomes 

∑𝐿𝜔 

𝑗=1 
𝟙 (𝑦𝑗̂ ) ̂ ̂A𝜔 ⋅ A𝑤 𝜏𝜔̂ = 𝜌𝜔̂ 𝑠∗

𝜔̂ = max { } . (5)
𝐿𝜔 𝑤 ∈ 𝕄 ‖A𝜔

̂ ‖‖A𝑤
̂ ‖ 
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The estimate for the full production costs of data-related activities for a given industry 𝑖 at time 𝑡 is 
then as follows: 

∑𝐿𝜔 

𝑗=1 
𝟙 (𝑦𝑗̂ ) ̂ ̂

𝐶𝑖,𝑡
̂ = 𝛼 ∑ ⎡⎢ ( max { 

A𝜔 ⋅ A𝑤 }) 𝑊̂𝜔,𝑖,𝑡𝐻̂𝜔,𝑖,𝑡
⎤⎥ . (6) 

𝜔∈Ω ⎣ 
𝐿𝜔 𝑤 ∈ 𝕄 ‖A𝜔

̂ ‖‖A𝑤
̂ ‖ ⎦ 

3.2.2. Sample Design and Description 

The BGT data enable observation of over 239 million job advertisements in the United States for 
2010–2019. The data include over a thousand O*NET SOC 2010 occupations. The data are used to 

train an auto-coder model for O*NET SOC 2010 using job text to obtain the numerical representation 

for each occupation such that we can compute pair-wise similarity between occupations. The sample 

design uses the occupation distribution across NAICS 3-digit subsectors based on the annual number of 
employees in privately-owned establishments from OEWS for 2015–2020. If observations available at the 

occupation-industry level are below the target (1,500 × percentage of occupations in a NAICS 3-digit 
subsector), all observations are included. Otherwise, we sample from the valid observations a targeted 

sample of 1,500 observations equally distributed based on the sequential order of the job posting dates. 
We only include occupations for which at least 100 job ads are available, meaning there is complete 

information for the job text, job posting date (ISO 8601), O*NET SOC 2010, and NAICS subsector. 
The sample design aims to be representative of the business sector in terms of the occupation-industry 

interactions and composition as well as temporal changes, while also maintaining desirable properties 
for modeling, such as avoiding extreme unbalanced classes or making inferences based on limited data. 
Our goal is different from traditional auto-coders, which may emphasize some metric like accuracy 

and may prefer to focus on having better performance for frequent occupations over having acceptable 

performance for less frequent occupations. 

Considering the observations with complete information (O*NET SOC 2010 and NAICS 3-digit codes 
are not always available), we sample occupations for which at least 100 observations are available and 

limit the observations included per occupation to around 1,500. We also exclude military occupations 
(SOC major group 55) and those that are exclusive to the public sector like legislators and postal service 

employees. The sample includes 959 O*NET SOC 2010 occupational codes that have between 101 and 

1,548 observations. 

The final sample comprises 1.12 million observations for which we recover the job advertisement text 
as well as the skills for each of the job advertisements. We split the dataset by applying a clustered 

sampling design based on occupation-industry subsector with 90 percent of the sample being used as 
the training set and 10 percent as the test set. 
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3.2.3. Machine Learning Model 

The modeling approach uses the doc2vec (Le and Mikolov 2014) implementation in gensim v4.0.1 

(Řehůřek and Sojka 2010) for Python (van Rossum and Drake 2009) v3.8.5. The modeling technique 

uses paragraph vectors to capture the semantics of documents as an alternative to “bag-of-words” or 
“bag-of-n-grams” representations. In our case, each job advertisement is represented not just by applying 

a tokenization to the text but by also including indicators for each job advertisement. After training the 

model, each occupation is represented by a multidimensional numerical abstraction. Once the model 
has been fitted, we extract the features that are a 1,000-dimensional numerical representation of each 

O*NET SOC 2010 code. The pair-wise cosine distance is then computed to obtain the occupation 

similarity matrix. The similarity matrix allows us to find the most similar landmark occupation.6 

3.2.4. Validation 

Model Validation. Occupation auto-coders are automated models that can predict occupation codes 
based on inputs such as job advertisements and job titles. One common autocoder regarded as a gold 

standard is the O*NET-SOC AutoCoder™ developed by R.M. Wilson Consulting, Inc. for the U.S. 
Department of Labor. There are various ways to evaluate the performance of a multi-class classifier. 
For example, the classifier accuracy claims for the O*NET-SOC AutoCoder™ are stated based on the 

inputs, whether it operates on a job advertisement and job title or on just a job title. For job titles and 

job advertisement text, the model accuracy for predicting O*NET SOC 2021 codes is 85 percent based 

on their internal test results. Since the model is using just the unstructured job advertisement text, 
we expect the performance to be lower than the gold standard using additional information. Another 
consideration is that the labeled data are also based on the BGT auto-coder for O*NET SOC 2010 

codes which in turn contains errors from the BGT auto-coder. Given the licensing terms and industry 

practices, properly assessing the performance of these tools is difficult. For example, a measure of 
accuracy can be significantly driven by unbalanced classes. Performing well for common occupations in 

a sample will result in better accuracy even if the performance for many occupations is not as good if 
those occupations are less common. For the purpose of obtaining a good numerical representation for 
each occupation, it is more valuable to have good performance for many occupations rather than great 
performance for a select few. One metric we compute is the unweighted average F1 score on our test 
set (out-of-sample) of around 120,000 observations for which the model predictions yield an estimate 

of 0.5 on a 959-dimensional classification problem. 

Validation of Landmark Occupations. An alternative strategy for obtaining representative occupations 
and similarities between occupations is to use the O*NET program. The O*NET tasks file provides 

6The cosine similarity can take values in the [−1, 1] interval, but in practice yields cosine distances in the [0, 1] interval 
avoiding the need for other transformations such as angular similarity. 
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estimates of how frequently certain occupations perform job work activities. For example, for the occu-
pation data entry keyers (43–9021.00) in the O*NET v26 data, there is a task relevant to data-related 

activities: “Compile, sort, and verify the accuracy of data before it is entered”. For this occupational 
task, the O*NET data provide a breakdown of how frequently the task is performed: Yearly or less 

(1.49), More than yearly (0), More than monthly (2.67), More than weekly (41.69), Daily (18.6), Sev-
eral times daily (18.6), Hourly or more (35.54). Each task can then be assigned an indicator of whether 
it is considered data-relevant or not and estimate a time-use factor for each occupation. Some of the 

heuristics we employ include assigning the frequency for each task per occupation to the category with 

the highest value (daily, several times daily, or hourly). At each of the different frequency categories, 
we compute the fraction of tasks deemed data-relevant. We then collapse the ratios assigning relative 

values of 10 percent, 20 percent, and 70 percent to daily, several times daily, and hourly, respectively. 
This back-of-the-envelope heuristic is used as an additional check on our rankings. Martin and Monahan 

(2022a) presents an alternative methodology to work with O*NET data to obtain time-use factors for 
green jobs (Martin and Monahan 2022b). To assess whether the landmark occupations are reasonable, 
we compute Spearman’s rank correlation coefficient and obtain a value of around 0.22. The correla-
tion coefficient reveals a negligible correlation, but the machine learning model seems to provide more 

reasonable rankings than the O*NET-based model. 

Time Use Temporal Variation. The estimation of time-use factors used online job advertisements for 
the period 2010–2019. The estimates are applied to the full series from 2002 to 2021. This approach 

assumes a representative time-use factor for the full period and restricts potentially significant dynamics 
such as time-use factor trends both at intensive or extensive margins. For example, more occupations 
taking on work activities related to the formation of data assets or occupations increasing their time-
effort allocation to those tasks. There are generally limitations with job advertisement data available 

for pre-2010. An additional challenge to estimating time-variant time-use factors is the low number 
of advertisements for various occupations that are not highly represented in job advertisement data. 
Relaxing the time-invariant assumption and assessing appropriate temporal periods could be beneficial 
extensions to this work. 

Suitability of Job Advertisements. There are two potential issues related to the suitability of the BGT 

job advertisement data for our methodology and estimates. The first potential issue refers to the results 
being highly dependent on the BGT process to compile their job ads data. We examined the variability of 
replicating the time-use factors using a different job ads data set, namely the National Labor Exchange 

(NLx) Research Hub. We compared only the pair-wise similarity between occupations as the NLx data 

did not include the “skills taxonomy”. The differences were marked but could potentially be caused by 

how we generated the samples for training the autocoder. The NLx data did not provide the industry 

classifications for the job postings, which did not allow us to generate a sample representative of the 

occupation distribution among sectors. 

https://43�9021.00
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The second potential issue related to job advertisement suitability is the assumption that job adver-
tisements, which are a prospective employer-provided description of expectations, accurately reflect the 

current functions of the workforce. To assess this assumption, we are currently exploring the American 

Community Survey (ACS) public use file of occupation and industry write-ins (2019). The public use file 

includes the raw write-in responses used to assign occupations to respondents as well as their employer’s 
industry classification. These responses are brief summaries of their main job responsibilities/work activ-
ities from current employees. The files also include the assigned occupation and industry coding based 

on the responses. 

3.2.5. Mapping Occupational Codes 

Using equation 5, we obtain O*NET SOC 2010 level estimates for the time-use factors. However, 
employment and wage data are collected and prepared with OEWS Employment Projections (EP) 2021 

codes. We use the crosswalk files to map the O*NET SOC 2010 codes to the SOC 2010 codes and 

then to OEWS 2021 codes (see subsection 3.1 for additional information on the process and data files). 
If multiple occupations are mapped to a single OEWS-EP 2021 code, the time-use factor for that 
occupation is the mean value for all mapped occupations. We then obtain time-use factor estimates for 
736 OEWS 2019 occupation codes. These estimates tend to be quite low with a mean lower than 10 

percent and a 95 percent quantile of 8 percent. The larger values are almost exclusive to the landmark 

occupations shown in table 2. 

3.3. Markup and Additional Adjustments 

Markup. We estimate the full production costs by multiplying the data-related wage bill by a markup 

(i.e., the 𝛼 in equations 1 and 6) that is designed to reflect employee benefits, capital costs, and 

intermediate consumption, none of which are included in the wage bill. Observing publicly available 

information, firms engaged in data aggregation, data sales, and other data-related market activities 
appear generally to be classified to industries in Information (NAICS 51) and Professional, Scientific 

and Technical (PST) Services (NAICS 54).7 Based on these observations, we use Data Processing and 

Hosting (NAICS 518), Other Information Services (NAICS 519), and Computer Systems Design (NAICS 

5415) as the representative industries for the markup. 

We calculate 𝛼 as a composite ratio of compensation, intermediate consumption (excluding materials), 
consumption of fixed capital (CFC), and net operating surplus to wages and salaries using data summed 

7For example, Axciom, Facebook, Localeze, and Burning Glass Technologies appear to be classified to NAICS 51 
industries. In addition, Alphabet, Foursquare, Infogroup, Nielsen, Automatic Data Processing Inc. (ADP), The NPD 
Group, and International Data Corporation (IDC) all appear to be classified to NAICS 54 industries. Exceptions are the 
credit bureaus, which are classified to Administrative & Support Services (NAICS 56) industries. 
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for select industries from BEA’s annual industry accounts. In other words, the composite ratio is 
weighted by the size of the chosen industries. The average annual ratio is 2.52. For our experimental 
results, we use 2.52 as a time-invariant markup for each year 2002–2021. 

Additional Adjustments. We do not have an estimate of own-account data output that is used up in 

current production versus own-account data output that is used in capital formation. Thus, we reduce 

the full production cost estimate by 50 percent to capture capital formation. 

We also adjust for potential overlap between data assets and R&D assets by reducing the estimated 

time-use factor for data-relevant activities based on ratios of R&D employees. Likewise, in addition to 

excluding software skills in the estimation of time-use factors, we assign a zero percent time-use factor 
for data-relevant activities to the occupations BEA uses to estimate own-account software—Computer 
Systems Analysts (15-1211), Computer Programmers (15-1251), Software Developers (15-1252), and 

Software Quality Assurance Analysts (15-1253)—to avoid potential overlap between data assets and 

software assets.8 Finally, we adjust for overlap between own-account data and purchased data by 

further reducing the adjusted production cost estimate for Data Processing and Hosting (NAICS 518) 
by 50 percent. 

We choose 50 percent as a placeholder for capital formation and purchased data adjustments to reflect 
our acknowledgment of the adjustments until future empirical evidence comes available. Table 3 sum-
marizes the effective factors that are applied to the wage bill to calculate investment in data assets for 
our core experimental results. Section 4 has more discussion on the markup and additional adjustments. 

Table 3. Effective factors applied to the wage bill 

NAICS Markup Capital formation Purchased data Effective factor 

518 2.52 0.50 0.50 0.63 
All other 2.52 0.50 N/A 1.26 

Note: The table summarizes by NAICS subsector the effective factors that are applied to the wage bill to calculate 
the full production costs. All other excludes NPISH and general government: Educational Services (NAICS 61), 
Health Care and Social Assistance (NAICS 62), Arts, Entertainment and Recreation (NAICS 71), Religious, 
Grantmaking, Civic, Professional, and Similar Organizations (NAICS 813), and Public Administration (NAICS 
92). 

8Occupational codes correspond to the BLS OEWS/EP 2021 taxonomy. 
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4. Addressing Measurement Challenges 

The main challenges for measurement of own-account data stocks and flows that we address in the 

paper are similar to challenges imposed by other own-account IPPs that are already included in capital 
formation in the SNA and the U.S. NIPAs. We identify here four challenges and how we address the 

challenges for own-account data. 

4.1. Scope of Costs in Capital Formation 

The scope of costs to include in capital formation is important for own-account data and other own-
account IPPs.9 The stages of the data value chain (OECD 2013; Moro Visconti, Larocca, and Marconi 
2017) yield insights into activities that underlie the production process for data – including collection, 
storage, processing, distribution, and usage – some of which are reflective of costs that embody capital 
formation. The scope that has been recently introduced by the OECD (2021) is that capital formation 

should include both recording and processing costs and the costs of procuring access to data. Procure-
ment costs may include either explicit purchases or the value of “free” digital products exchanged for 
access.10 

We address this challenge by identifying skills in the BGT taxonomy that are relevant to data-related 

activities, including data entry, storage, analysis, and management. These skills are embodied by the 

occupations that underlie our estimates of the data wage bill. In addition, we reduce the full production 

cost estimate for data by 50 percent to account for data-related output that is used up in the current 
period and never becomes capital formation.11 

4.2. Multiple Counting 

Own-account data and other own-account IPPs are at risk of multiple counting from several sources. 

9For example, OECD (2010) identifies eight stages of activities in the production of own-account software: feasibility 
analysis, functional analysis, detailed analysis, programming, tests, documentation, training, and maintenance. Of the 
eight stages, only costs for functional analysis, detailed analysis, programming, tests, and documentation are within scope 
for capital formation. 

10The latter procurement costs are identified in Farboodi and Veldkamp (2021) as a measurement challenge, and their 
model moves beyond price-based valuation by assigning a value to goods and data that have a zero transaction price. 

11Another approach would be to use a depreciation rate for data that reflects a more rapid decline in value of invest-
ment flows as a result of obsolescence. However, such an approach would disregard the accounting difference between 
intermediate consumption and consumption of fixed capital. 
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4.2.1. Overlap Among Categories of IPPs 

One source of multiple counting is overlap among categories of IPPs that are separately measured, such 

as data, software, and research and development (R&D). 

Software. We address the overlap between data and software by estimating the time-use factors for 
data, which are intentionally based on unique data-relevant skills that are distinguishable from software-
relevant skills. In addition, we completely exclude from the data wage bill the wages of the occupations 
that BEA uses to estimate own-account software–Computer Programmers, Computer Systems Analysts, 
Software Developers, and Software Quality Assurance Analysts.12 For comparison with data-relevant 
skills presented in table 1, table 4 presents the top 80 BGT skills identified as software relevant. Likewise, 
table 5 shows the top time-use factors for occupations engaged in software-related activities to compare 

with landmark occupations for data reported in table 2. 

While tables 1 and 4 demonstrate no overlap for BGT skills by design, there is overlap of seven occupa-
tions with high time-use factors in tables 2 and 5. The occupations that show up in both tables include 

Business Intelligence Analysts, Computer and Information Research Scientists, Database Administrators, 
Database Architects, Data Warehousing Specialists, Geographic Information Systems Technicians, and 

Statisticians. In addition, the data and software time-use factors sum to more than 100 percent for the 

first five occupations, which implies the occupations and their time-use factors may be used to measure 

either data- or software-related activity but not both. However, there is no overlap between landmark 

occupations for data and the occupations BEA currently uses to estimate own-account software. 

Overlap is expected when activities are intertwined. One example is software and R&D. Based on 

the 2018 Business Enterprise Research and Development Survey (BERD) table 19, $165.6 billion (37.5 

percent) of domestic R&D was software products and embedded software R&D.13 In the NIPAs, this 
overlap is included with R&D investment and excluded from software investment. There may also be 

job activities at the intersection of data, software, and R&D, such as software programming to prepare 

a data set for research. 
12The time-use factors for these occupations are relatively modest - each less than 20 percent - and we think the 

occupations may reasonably embody some data-related activities that accompany own-account software development but 
are not included in BEA’s measures of own-account software. However, we choose to completely exclude the occupations 
for a more conservative estimate. 

13According to guidance in the BERD survey, R&D activity in software includes (1) software development or improvement 
activities that expand scientific or technological knowledge and (2) construction of new theories and algorithms in the field 
of computer science. Likewise, the BERD survey requires that R&D activity in software exclude (1) software development 
that does not depend on scientific or technological advance, such as supporting or adapting existing systems, adding 
functionality to existing application programs, and routine debugging of existing systems and software, (2) creation of 
new software based on known methods and applications, (3) conversion or translation of existing software and software 
languages, and (4) adaptation of a product to a specific client, unless knowledge that significantly improved the base 
program was added in that process. 

https://ncses.nsf.gov/pubs/nsf21312/table/19#data-tables
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Table 4. BGT skills identified as software relevant 

.NET 
Active Server Pages (ASP) 
Agile Development 
AJAX 
Amazon Web Services (AWS) 
AngularJS 
Apache Hadoop 
Apache Tomcat 
Apache Webserver 
Application Design 
ASP.NET 
Atlassian JIRA 
C++ 
COBOL 
Computer Engineering 
Crystal Reports 
Debugging 
Eclipse 
Enterprise Resource Planning (ERP) 
Extensible Markup Language (XML) 
Extensible Stylesheet Language XSL 
Firmware 
Git 
HTML5 
Hypertext Preprocessor (PHP) 
IBM WEBSPHERE 
Informatica 
Java 
Java Server Pages (JSP) 
JavaScript 
JavaScript Object Notation (JSON) 
jQuery 
JUnit 
Linux 
Microsoft Access 
Microsoft Azure 
Microsoft C# 
Microsoft Operating Systems 
Microsoft Project 
Microsoft SQL 

Microsoft Sql Server Integration Services (SSIS) 
Microsoft Visio 
Middleware 
MySQL 
Object-Oriented Analysis and Design (OOAD) 
Oracle 
Oracle PL/SQL 
PERL Scripting Language 
Platform as a Service (PaaS) 
Python 
Relational DataBase Management System (RDBMS) 
Ruby 
Salesforce 
SAP 
SAS 
Scrum 
Shell Scripting 
Software Architecture 
Software as a Service (SaaS) 
Software Development 
Software Engineering 
Software Testing 
SQL 
SQL Server 
SQL Server Reporting Services (SSRS) 
Systems Analysis 
Systems Development Life Cycle (SDLC) 
Teradata DBA 
Transact-SQL 
Unified Modeling Language (UML) 
UNIX 
UNIX Shell 
User Acceptance Testing (UAT) 
User Interface (UI) Design 
Visual Basic 
Visual Studio 
VMware 
Waterfall 
WebLogic 
Windows Server 

Note: Top 80 software skills by frequency identified from landmark occupations. 
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Table 5. Top time use factors for software 

O*NET SOC 2010 Description Time use factor 

15-1133.00 
15-1132.00 
15-1131.00 
15-1121.00 
15-1134.00 
15-1199.02 
15-1199.08 
15-1199.06 
15-1141.00 
15-1199.01 
15-1199.09 
15-1143.00 
13-1111.00 
15-1199.07 
15-1111.00 
15-1142.00 
15-1199.00 
15-1122.00 
11-3021.00 
17-2061.00 
15-1199.04 
15-1199.03 
15-1152.00 
15-1151.00 
15-2041.00 
13-2099.01 
15-1199.11 
15-1143.01 
17-3029.07 
17-1011.00 
13-2051.00 
15-1199.10 
13-1081.02 
17-2199.08 
27-1021.00 
27-3042.00 
17-3031.02 
15-1199.05 

Software Developers, Systems Software 
Software Developers, Applications 
Computer Programmers 
Computer Systems Analysts 
Web Developers 
Computer Systems Engineers/Architects 
Business Intelligence Analysts 
Database Architects 
Database Administrators 
Software Quality Assurance Engineers and Testers 
Information Technology Project Managers 
Computer Network Architects 
Management Analysts 
Data Warehousing Specialists 
Computer and Information Research Scientists 
Network and Computer Systems Administrators 
Computer Occupations, All Other 
Information Security Analysts 
Computer and Information Systems Managers 
Computer Hardware Engineers 
Geospatial Information Scientists and Techs 
Web Administrators 
Computer Network Support Specialists 
Computer User Support Specialists 
Statisticians 
Financial Quantitative Analysts 
Video Game Designers 
Telecommunications Engineering Specialists 
Mechanical Engineering Technologists 
Architects, Except Landscape and Naval 
Financial Analysts 
Search Marketing Strategists 
Logistics Analysts 
Robotics Engineers 
Commercial and Industrial Designers 
Technical Writers 
Mapping Technicians 
Geographic Information Systems Technicians 

0.95 
0.94 
0.85 
0.82 
0.65 
0.60 
0.55 
0.55 
0.52 
0.52 
0.50 
0.49 
0.48 
0.46 
0.45 
0.41 
0.40 
0.40 
0.39 
0.38 
0.38 
0.37 
0.37 
0.36 
0.34 
0.32 
0.32 
0.32 
0.30 
0.30 
0.28 
0.28 
0.28 
0.27 
0.27 
0.27 
0.27 
0.27 

Note: Bold occupations denote landmark occupations that are by design the same occupations BEA 
to estimate own-account software. Software Developers (systems software) and Software Developers 
are combined into Software Developers and Software Quality Assurance Analysts in SOC 2018. 

currently uses 
(applications) 
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Observing independently estimated time-use factors that together exceed 100 percent is not problematic 

in itself for our estimates because we know that own-account software estimation is limited to four 
specific occupations with relatively low time-use factors. However, the outcome does suggest an incentive 

to jointly estimate own-account data and own-account software to ensure consistency and prevent double 

counting if the scope of own-account software is expanded to include more occupations in the future. 

Research & Development. In contrast to software, the BGT skills dataset does not include R&D-relevant 
skills to distinguish them from data-relevant skills, which may yield some overlap between data assets 
and R&D assets. For example, Goodridge, Haskel, and Edquist (2021) and Statistics Canada (2019a) 
both argue that data science activities meet the SNA and OECD (2015) definition of R&D. However, 
Goodridge, Haskel, and Edquist (2021) suggest that data science is not included in measured R&D in 

practice by some countries because R&D is generally measured based on surveys designed for known 

performers of traditional scientific R&D activities. Likewise, Statistics Canada (2019a) suggests that the 

survey they use to measure R&D needs to be examined for updates because the survey was developed 

years ago and is biased toward the selection of firms engaged in more traditional forms of R&D activities, 
such as pharmaceutical firms, and biased away from a growing number of firms in diverse industries 
engaged in data science activities. 

For R&D measures in the U.S. national accounts, the survey used to collect information on performance 

of business R&D is the BERD survey.14 The 2019 BERD survey explicitly includes software development 
or improvement activities that expand scientific or technological knowledge and construction of new 

theories and algorithms in the field of computer science. In addition, the 2019 BERD survey asks 
respondents to report the percentage of domestic R&D expenditures paid for and performed by them 

that was for artificial intelligence (AI), which includes speech recognition, machine vision, machine 

learning, text analytics, and natural language generation and processing. Thus, data science may not 
be absent in practice from the BERD survey and may be included in BEA’s measures of R&D based on 

the BERD survey. 

To adjust for potential overlap between data assets and measured R&D assets in our estimates, we 

reduce the time-use factor for data-relevant activities based on an estimate of the ratio of employees 
whose main work activity is R&D. We use a sample from the National Survey of College Graduates 
(NSCG), National Survey of Recent College Graduates (NSRCG), and Survey Doctorate Recipients 
(SDR) from 1993 to 2013 to estimate by occupation group the ratio of employees whose main work 

14The 2019 BERD survey defines research and development as follows: “Research is defined as experimental or theoretical 
work undertaken primarily to acquire new knowledge or understanding of phenomena and observable facts. Research may 
be either “basic”, where the goal is primarily to acquire new knowledge or understanding of a given topic without a 
specific commercial application in mind, or “applied”, where the goal is to solve a specific problem or meet a specific 
commercial objective. Development is defined as the systematic use of research and practical experience to produce new or 
improved goods, services, or processes. In simple terms, the intended output of research is ideas and the intended output 
of development is products.” 
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activity was R&D (Minnesota Population Center 2016). We then develop a crosswalk between the 

survey occupation groups and those in the latest taxonomy of the BLS OEWS/EP codes. We matched 

249 out of the 834 occupation codes used in the wage bill with 26 of the NSF survey codes. For these 

249 occupations, we adjust the time use factor as follows: 

′𝜏𝜔̂ = 𝜏𝜔̂ (1 − 𝜌𝜔̂ 
′) (7) 

′ where 𝜏𝜔̂ is the time-use factor for occupation 𝜔 adjusted for R&D, 𝜏𝜔̂ is the original time-use factor, 
′ and 𝜌𝜔̂ is the corresponding share of employees for occupation 𝜔 in the NSF surveys that reported R&D 

as the primary work activity based on the share of time allocated to it.15 

4.2.2. Non-Rival Use of Data 

Another source of multiple counting is overlap between own-account data and purchased data, which 

is also a source of multiple counting for software and R&D. We address this challenge by further 
reducing the adjusted production cost estimate by 50 percent for Data Processing and Hosting (NAICS 

518), which is the NAICS code with data-related activities closest to those we measure under our 
methodology.16 

Finally, a source of multiple counting that has been cited as a concern specifically for data as an asset 
is that the same piece of information can be used in multiple databases. However, a single piece of 
information is transformed when it is added to a record with other pieces of information. Likewise, we 

are not valuing pieces of information but rather the activities associated with making the information 

available in a record, which is unique to every firm for own-account measures. 

4.3. Measuring Capital Costs 

A challenge that may be more relevant (but not unique) to data stocks and flows is how to measure the 

capital cost component in the sum-of-costs. There is a question of what proportions of the sum-of-costs 
should be accounted for by labor costs, capital costs, and intermediate consumption, given the role of 
capital services in the collection, storage, analysis, and management of data. 

15As an alternative, we also consider completely excluding from the data wage bill the wages of four SOC 2010 
occupations that appear to be R&D occupations based on “research” in the descriptions: Computer and Information 
Research Scientists (SOC 15–1111), Operations Research Analysts (SOC 15–2031), Survey Researchers (SOC 19–3022), 
and Social Science Research Assistance (SOC 19–4061). However, we think the occupations may reasonably embody some 
data-related activities that accompany R&D, and we are not able to determine if excluding these four occupations based 
on “research” is as comprehensive as adjusting based on the ratios. 

16The reduction for Data Processing and Hosting (NAICS 518) to adjust for non-rival use of data is in addition to the 
reductions for software and R&D overlap. 
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We apply a markup of 2.52 to the wage bill as explained in section 3.3. Since the markup is a weighted 

composite ratio of compensation, intermediate consumption (excluding materials), CFC, and net oper-
ating surplus, we can decompose the markup into the proportionate share of each component in the 

sum-of-costs. The decomposition is presented in table 6. 

Table 6. Weighted composite ratio for full sum-of-costs 

Ratio Share (%) 

Compensation 1.15 46 
Intermediate consumption 0.81 32 
Consumption of fixed capital 0.29 11 
Net operating surplus 0.27 11 

Markup 2.52 

Note: All data are from BEA’s annual industry accounts. Intermediate consumption excludes materials. The 
table reports the simple average for 2002-2021 of each annual measure summed for NAICS 518-519 and NAICS 
5415 divided by annual wages and salaries summed for the same industries. 

4.4. Prices and Depreciation 

Own-account data are not transacted in active markets, which means there are no observed transactions 
that are useful for measuring prices and depreciation. We utilize international guidelines and U.S. practice 

for deflating and depreciating own-account software and databases as a starting point for deflating and 

depreciating own-account data, which reflects the inclusion of own-account data as a subcategory of 
software and is consistent with preliminary guidance emerging from the SNA community’s current work 

on revising the SNA. 

Prices. In the absence of deflators for own-account software, OECD (2010) recommends that deflators 
for custom software be used as a proxy until own-account software deflators are developed. In addition, 
OECD (ibid.) suggests three options for own-account database deflators. One option is to use a price 

index of a related activity for which there is a price index of reasonable quality. The other two options 
are an input cost index, one with zero productivity growth and another with an adjustment based on 

productivity growth of a similar industry. 

BEA does not compile a price index for own-account databases because own-account databases are 

not measured separately from own-account software in the U.S. NIPAs. For own-account software, 
BEA currently compiles a price index from a weighted average of the prepackaged software price and 

a BEA input cost index (U.S. Bureau of Economic Analysis 2020). The input cost index is compiled 

from BLS data on wage rates for Computer Programmers and Computer Systems Analysts and the 

intermediate consumption associated with the production of software. The input cost index reflects an 
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explicit adjustment for changes in productivity that is based primarily on a BLS total factor productivity 

index.17 

To address the lack of prices for own-account data, we develop an experimental price index. The price 

index follows BEA’s own-account software price index methodology by estimating a composite wage rate 

series and an intermediate input cost series. For the wage series we use the effective wage bill from our 
estimates of investment in data assets. In other words, we use the time-use factors for each occupation 

in the business sector adjusted for R&D and software overlap. To obtain the composite wage rate series 
we use the following equation: 

′∑ 𝑊𝜔,𝑖,𝑡𝐻𝜔,𝑖,𝑡𝜏𝜔̂𝑟𝑡 = ′ (8)
∑ 𝐻𝜔,𝑖,𝑡𝜏𝜔̂ 

where the composite wage rate at year 𝑡, 𝑟𝑡, is given as the effective wage bill over the number of 
employees. 𝑊𝜔,𝑖,𝑡 denotes the average wage for occupation 𝜔 at year 𝑡 for industry 𝑖 and 𝐻𝜔,𝑖,𝑡 the 

′ number of employees for the same occupation, industry, and year. Lastly, 𝜏𝜔̂ is the effective time-use 

factors adjusted for overlap with software and R&D. 

In addition to the composite wage rate, the input-cost price index includes a cost component for 
intermediate inputs based on intermediate consumption for Data Processing and Hosting (NAICS 518) 
and Computer Systems Design (NAICS 5415). We also adjust the input-cost price index for total factor 
productivity growth published by BLS for Data Processing and Hosting and Computer Systems Design, 
which are weighted by industry gross output. Finally, we combine our productivity-adjusted input-cost 
index in a simple average with the average industry price index weighted by industry gross output for 
Data Processing and Hosting and Computer Systems Design. The resulting experimental price index 

for own-account data is presented in figure 1 where 2012 is the base year. 

Depreciation. OECD (2009) recommends several options for determining depreciation parameters for an 

asset class, which generally requires information on prices or service lives. One option uses information 

on the service life and makes an additional assumption about the functional form of the depreciation 

pattern. A functional form that is commonly used for pragmatic reasons is the geometric model of 
depreciation, which yields a pattern of constant percentage decline in an asset’s value. In the absence 

of econometric estimates of the geometric depreciation rate, the geometric depreciation rate can be 

estimated using a simple declining balance method as 𝛿 = 𝑅 / 𝑆, where 𝑅 is an estimated declining 

balance rate and 𝑆 is an average service life (Hulten and Wykoff 1996). The declining balance rate 

may be either estimated econometrically or is sometimes assumed to be 2. For software and databases, 
OECD (2010) recommends the average service life be obtained by surveying software users, surveying 

17When BEA first introduced capital measures of own-account software into the NIPAs in 1999, an input cost index 
was compiled from a weighted average of compensation rates for Computer Programmers and Computer System Analysts 
and the intermediate consumption associated with their work (Moulton and Sullivan 1999). No productivity adjustment 
was made. 
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software suppliers, or hiring software consultants. BEA does not compile a measure of depreciation for 
own-account databases but does compile a measure of depreciation for own-account software for the 

U.S. Fixed Assets Accounts (FAAs). To estimate depreciation for own-account software, BEA uses a 

5-year service life and a declining balance rate of 1.65 to determine the geometric depreciation rate. 
The service life is based on estimates of the relationship between computer expenditures and software 

expenditures, anecdotal evidence about how long software is used before replacement (including an in-
formal survey of business uses of software), and tax-law-based service lives of software.18 The declining 

balance rate is borrowed from the Hulten-Wykoff methodology that is used for most equipment in the 

FAAs (Hulten and Wykoff 1981; Hulten, McCallum, and Urban Institute 1981; Wykoff and Hulten 1979; 
Fraumeni 1997). To address the lack of depreciation rate for own-account data, we use BEA’s current 
geometric depreciation rate of 0.33 for own-account software as a proxy. 

Figure 1. Own-account data price index 
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18A summary of BEA’s depreciation estimates is available at: https://apps.bea.gov/national/pdf/BEA_ 
depreciation_rates.pdf. 

https://apps.bea.gov/national/pdf/BEA_depreciation_rates.pdf.
https://apps.bea.gov/national/pdf/BEA_depreciation_rates.pdf.
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5. Results 

5.1. National Aggregates 

5.1.1. Experimental Current-Dollar and Historical-Cost Estimates 

Experimental estimates for aggregate business sector current-dollar investment in data assets for 2002–2021 

are presented in figure 2. The upper panel in the figure reflects current-dollar levels and the lower panel 
reflects current-dollar log growth rates. Estimated current-dollar investment in 2002 is $84 billion and 

in 2021 is $186 billion. Growth of current-dollar investment is as high as 8.6 percent for 2004 and as low 

as −4.4 percent for 2010. The average annual growth rate in current-dollar investment for 2003–2021 

is 4.2 percent. Prior to the recession of 2007–2009, the average annual growth rate for 2003–2007 

was 6.3 percent, which declined to 3.4 percent for 2008–2021. Average annual growth for the ten-year 
period 2012–2021 was 4.7 percent. 

Figure 2. Current-dollar annual investment in data assets 
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Current-dollar investment in data assets as a share of NIPA current-dollar business sector value-added 

(BVA) is reported in figure 3. The share of data investment for the period averages 1.0 percent of 
business sector value-added. We also report in figure 3 current-dollar investment in data assets as a 

share of NIPA current-dollar investment in IPPs and as a share of NIPA current-dollar investment in 

private fixed assets. Data investment as a share of investment in IPPs declines over the period from 

22.0 percent in 2002 to 16.9 percent in 2020 - the share averages 20.2 percent for the period. Data 

investment as a share of investment in private fixed assets is 4.8 percent in 2002 and 5.1 percent in 

2020 with some variation over the period - the share averages 5.0 percent for the period. 

Figure 3. Investment in data assets as a share of NIPA aggregates 
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Note: The numerator for each share is the current-dollar investment in data assets. The denominator for each share is the 
current-dollar NIPA aggregate plus the current-dollar investment in data assets. Business sector value-added (BVA) is from 
line 2 of “National Income and Product Accounts: Table 1.3.5. Gross Value Added by Sector”. Investment in intellectual 
property products (IPP) is from line 1 of “Fixed Assets Accounts: Table 3.7I. Investment in Private Intellectual Property 
Products by Industry”, adjusted to exclude NPISH by subtracting lines 66, 67, and 72. Investment in private fixed assets 
(PFA) is from line 1 of “Fixed Assets Accounts: Table 3.7ESI. Investment in Private Fixed Assets by Industry”, adjusted 
to exclude NPISH by subtracting line 66, 67, and 72. 

https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_list=24&series=a&first_year=2002&last_year=2021&scale=-9&categories=survey&thetable=
https://apps.bea.gov/iTable/iTable.cfm?reqid=10&step=3&isuri=1&table_list=139&series=q&first_year=2002&allyears=0&tabledisplay=&scale=-99&last_year=2020
https://apps.bea.gov/iTable/iTable.cfm?reqid=10&step=3&isuri=1&table_list=139&series=q&first_year=2002&allyears=0&tabledisplay=&scale=-99&last_year=2020
https://apps.bea.gov/iTable/iTable.cfm?reqid=10&step=3&isuri=1&table_list=138&series=q&first_year=2002&allyears=0&tabledisplay=&scale=-99&last_year=2020
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Figure 4. Historical-cost annual net stocks of data assets 
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Experimental estimates for aggregate business sector historical-cost net stocks of data assets for 2002–2021 

are presented in figure 4. The historical-cost net stocks are calculated using a perpetual inventory method 

(PIM) with geometric depreciation. The PIM is a sum of annual depreciated historical-cost investment 
in data assets. Annual historical-cost investment in data assets prior to 2002 is backcast using the 

annual growth in current-dollar investment in own-account software as an indicator. Depreciation of 
annual historical-cost investment is calculated using BEA’s depreciation rate for own-account software 

of 0.33, assuming new investment in data assets is placed in service at midyear. The calculation for 
annual depreciated historical-cost investment, i.e., net stock 𝑁, in year 𝑡 for investment 𝐼 placed in 

service in year ℎ can be summarized as follows: 

𝑁𝑡,ℎ = 𝐼ℎ (1 − 
2
𝛿 ) (1 − 𝛿)𝑡−ℎ . (9) 

The upper panel in figure 4 reflects historical-cost levels and the lower panel reflects historical-cost log 

growth rates. Estimated historical-cost net stock in 2002 is $205 billion and in 2021 is $421 billion. 
Growth of historical-cost net stocks is as high as 6.0 percent for 2007 and as low as 0.4 percent for 
2010. The average annual growth rate in historical-cost net stocks for 2003–2021 is 3.8 percent. 
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Figure 5. Net stocks of data assets as a share of FAA aggregates 
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Note: The numerator for each share is the historical-cost net stock of data assets. The denominator for each share is the 
historical-cost FAA aggregate plus the historical-cost net stock of data assets. Net stocks of intellectual property products 
(IPP) are from line 1 of “Fixed Assets Accounts: Table 3.3I. Historical-Cost Net Stock of Private Intellectual Property 
Products by Industry”, adjusted to exclude NPISH by subtracting lines 66, 67, and 72. Net stocks of private fixed assets 
(PFA) are from line 1 of “Fixed Assets Accounts: Table 3.3ESI. Historical-Cost Net Stock of Private Fixed Assets by 
Industry”, adjusted to exclude NPISH by subtracting lines 66, 67, and 72. 

We report the historical-cost net stocks of data assets as a share of the FAA historical-cost net stocks 
of IPPs and as a share of the FAA historical-cost net stocks of private fixed assets in figure 5. Data 

stocks as a share of IPP stocks decline over the period from 15.6 percent in 2002 to 12.0 percent in 

2021 - the share averages 13.9 percent for the period. Data stocks as a share of private fixed assets 
stocks is 1.4 percent in 2002 and 1.3 percent in 2021 with some variation over the period - the share 

averages 1.4 percent for the period. 

https://apps.bea.gov/iTable/iTable.cfm?reqid=10&step=3&isuri=1&table_list=131&series=q&first_year=2002&allyears=0&tabledisplay=&scale=-99&last_year=2020&categories=publicfaa
https://apps.bea.gov/iTable/iTable.cfm?reqid=10&step=3&isuri=1&table_list=131&series=q&first_year=2002&allyears=0&tabledisplay=&scale=-99&last_year=2020&categories=publicfaa
https://apps.bea.gov/iTable/iTable.cfm?reqid=10&step=3&isuri=1&table_list=130&series=q&first_year=2002&allyears=0&tabledisplay=&scale=-99&last_year=2020&categories=publicfaa
https://apps.bea.gov/iTable/iTable.cfm?reqid=10&step=3&isuri=1&table_list=130&series=q&first_year=2002&allyears=0&tabledisplay=&scale=-99&last_year=2020&categories=publicfaa
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5.1.2. Real Growth 

We compare the log growth in real U.S. aggregate measures with and without our experimental es-
timates of business sector investment in data assets for 2003–2020. Real aggregate measures include 

business sector value-added, private sector investment in IPPs, and private sector investment in software. 
We recalculate measured aggregate prices using Törnqvist expenditure shares. We report average and 

cumulative annual growth in table 7. 

Table 7. Growth in real measures with and without investment in data assets 2003–2020 (%) 

Average 

With data W/o data Δ 

Cumulative 

With data W/o data Δ 

Data 7.47 134.42 
Value-added 1.99 1.95 0.04 35.89 35.15 0.74 
IPPs 
Software 

5.28 
7.45 

4.97 
7.71 

0.31 
−0.26 

95.08 
134.07 

89.48 
138.72 

5.60 
−4.65 

Note: The table reports average and cumulative log growth rates in real data investment along with changes 
in growth for business sector real value-added, private sector real investment in IPPs, and private sector real 
investment in software with and without data investment for 2003–2020. Aggregate price indexes are recalculated 
using Törnqvist expenditure shares. 

The average annual growth in real data investment for 2003–2020 is 7.5 percent and the cumulative 

annual growth for the period is 134.4 percent. When data investment is added to business sector value-
added, the average annual change in real value-added growth over the period is an increase of 4 basis 
points, and the cumulative annual change is an increase of 74 basis points. 

When data investment is added to IPP investment, the average annual growth in real investment in 

IPPs for 2003–2020 is 31 basis points higher, and the cumulative average annual growth is 560 basis 
points higher. In contrast, the growth of real investment in data is lower than software investment, so 

the declines in average annual growth in real investment in software for the period is 26 basis points 
and in cumulative average annual growth is 465 basis points.19 

In relation to other types of capital formation, data as an asset seems to grow relatively faster than R&D 

and entertainment, literary, and artistic originals. However, the software category of IPPs grows faster 
than data. One plausible explanation for this result is the complementary relationship between data and 

software. Software is an indispensable asset used for data-related activities such as transformations and 

19Goodridge, Haskel, and Edquist (2021) report labor productivity with and without data investment for 13 European 
Union countries and find a modest average increase in labor productivity of only 5 basis points with data investment for 
2011–2016. The largest average annual increase by country is 9 basis points attributable to Germany, and the largest 
average annual decrease by country is 9 basis points attributable to Estonia. 
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analysis of data (e.g., data science). This could explain why software investment growth outpaces data 

investment growth because data assets increase the demand for software to make use of the data assets. 

5.1.3. Shares of Investment by Occupation 

In order to assess overlap between our estimates of data investment and investment in other IPPs - i.e., 
R&D and software - we calculate shares of investment in data by occupation. Table 8 reports shares 
of investment in data for occupations with more than 0.5 percent share for 2002–2021. We choose the 

cutoff to fit the table onto a single page. The 40 occupations in table 8 account for 68.4 percent of our 
investment estimate for the period. There are over 600 additional occupations included in our estimate 

but excluded from table 8. We note two observations in table 8. First, even if an occupation makes the 

list of landmark occupations in table 2 does not imply the occupation will account for a large share of the 

investment estimate. Two landmark occupations that do not make the cut-off for table 8 are wellhead 

pumpers and hearing aid specialists, which may be useful references to calculate a numeric similarity 

for non-landmark occupations but do not appear to play a big role in data investment. In contrast, 
landmark occupations like data entry keyers and database administrators and architects account for a 

large share of the data investment estimate. Second, R&D occupations and software occupations are 

mostly absent from table 8, which reflect the adjustments to exclude R&D employees and software 

occupations. Occupations with lower shares such as computer and information research scientists and 

computer network architects may contribute to capital formation in data as well as capital formation 

in R&D and software, but occupations with the highest shares are unlikely to contribute to capital 
formation in R&D and software. 

5.2. NAICS Sector Aggregates 

5.2.1. Experimental Current-Dollar Estimates 

For the period 2002–2021, table 9 shows the total current-dollar investment in data was $2.6 trillion. 
The largest dollar investments were made in Professional, Scientific, and Technical (PST) Services ($646 

billion), Manufacturing ($353 billion), and Finance and Insurance ($338 billion). The smallest dollar 
investments were made in Agriculture, Utilities, and Mining. 
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Table 8. Occupational Shares of Investment in Data 2002-2021 

OEWS 2021 Description Share (%) 

43-9061 Office Clerks, General 5.68 
13-1111 Management Analysts 5.27 
11-1021 General and Operations Managers 4.48 
43-9021 Data Entry Keyers 4.26 
11-3021 Computer and Information Systems Managers 4.15 
43-3031 Bookkeeping, Accounting, and Auditing Clerks 3.28 
43-4051 Customer Service Representatives 3.21 
43-6014 Secs and Admin Assistants, Except Legal, Medical, and Executive 2.85 
13-1161 Market Research Analysts and Marketing Specialists 2.68 
15-1242 Database Administrators 2.58 
15-1243 Database Architects 2.38 
15-1244 Network and Computer Systems Administrators 2.18 
11-3031 Financial Managers 2.17 
13-2011 Accountants and Auditors 2.03 
43-1011 First-Line Supervisors of Office and Admin Support Workers 1.73 
15-1299 Computer Occupations, All Other 1.41 
11-2021 Marketing Managers 1.12 
15-1241 Computer Network Architects 1.12 
11-9041 Architectural and Engineering Managers 1.05 
15-1232 Computer User Support Specialists 0.94 
11-1011 Chief Executives 0.90 
13-1071 Human Resources Specialists 0.89 
15-1221 Computer and Information Research Scientists 0.85 
17-2112 Industrial Engineers 0.81 
13-1082 Project Management Specialists 0.79 
13-2051 Financial and Investment Analysts 0.77 
41-4012 Sales Reps, Wholesale and Manufacturing, Except T&S Prods 0.71 
51-9061 Inspectors, Testers, Sorters, Samplers, and Weighers 0.71 
11-2022 Sales Managers 0.71 
15-1212 Information Security Analysts 0.69 
43-3021 Billing and Posting Clerks 0.68 
13-2054 Financial Risk Specialists 0.68 
43-5071 Shipping, Receiving, and Inventory Clerks 0.66 
41-3091 Sales Reps of Servs, Except Ads, Insurance, Fin Servs, and Tvl 0.64 
43-6011 Executive Secretaries and Executive Administrative Assistants 0.60 
13-1199 Business Operations Specialists, All Other 0.59 
15-2031 Operations Research Analysts 0.59 
13-1020 Buyers and Purchasing Agents 0.52 
53-7062 Laborers and Freight, Stock, and Material Movers, Hand 0.51 
43-5061 Production, Planning, and Expediting Clerks 0.51 

Total 68.38 

Note: Shares of investment in data are included for occupations with at least 0.5 percent share. 
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Table 9. Current-dollar investment in data assets by NAICS sector 2002–2021 

NAICS Description ($B) 

11 Agriculture, Forestry, Fishing and Hunting 4 
21 Mining, Quarrying, and Oil and Gas Extraction 29 
22 Utilities 28 
23 Construction 95 
31-33 Manufacturing 353 
42 Wholesale Trade 183 
44-45 Retail Trade 141 
48-49 Transportation and Warehousing 81 
51 Information 159 
52 Finance and Insurance 338 
53 Real Estate and Rental and Leasing 51 
54 Professional, Scientific, and Technical Services 646 
55 Management of Companies and Enterprises 179 
56 Administrative & Support and Waste Management & Remediation Services 210 
72 Accommodation and Food Services 36 
81 Other Services (except Public Administration) 30 

Total 2,563 

Note: Current-dollar estimates summed for 2002–2021 by NAICS sector. Estimates for NPISH and general 
government are excluded: Educational Services (NAICS 61), Health Care and Social Assistance (NAICS 62), Arts, 
Entertainment and Recreation (NAICS 71), Religious, Grantmaking, Civic, Professional, and Similar Organizations 
(NAICS 813), and Public Administration (NAICS 92). 

Experimental estimates for current-dollar investment in data assets by NAICS sector for 2002–2021 

are presented in table 9. Table 10 reports the average annual growth in current-dollar investment in 

data assets by NAICS sector for 2003–2021. The current-dollar estimates as a share of current-dollar 
value-added by NAICS sector for 2002–2021 are shown in figure 6. Since our methodology starts with 

an estimate of the occupation-based wage bill, results by NAICS sector reflect industries that employ 

occupations engaged in data-related activities. 
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Figure 6. Investment in data assets as a share of value-added by NAICS sector 2002–2021 
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Note: The numerator for each share is the current-dollar investment in data assets summed for 2002–2021. The denominator 
for each share is the current-dollar investment in data assets plus NAICS sector value-added summed for 2002–2021 from 
the U.S. Bureau of Economic Analysis, “Interactive Access to Industry Economic Accounts Data: Table 1 Value Added by 
Industry”. 

https://apps.bea.gov/iTable/iTable.cfm?reqid=150&step=3&isuri=1&table_list=1&series=a&first_year=2002&columns=ii&scale=-9&last_year=2021&categories=gdpxind&thetable=&rows=11,21,22,23,31g,42,48tw,51,52,53,54,55,56,71,72,81
https://apps.bea.gov/iTable/iTable.cfm?reqid=150&step=3&isuri=1&table_list=1&series=a&first_year=2002&columns=ii&scale=-9&last_year=2021&categories=gdpxind&thetable=&rows=11,21,22,23,31g,42,48tw,51,52,53,54,55,56,71,72,81
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Table 10. Average annual growth in current-dollar investment in data assets by NAICS sector 
2003–2021 

NAICS Description (%) 

11 Agriculture, Forestry, Fishing and Hunting 3.24 
21 Mining, Quarrying, and Oil and Gas Extraction 4.07 
22 Utilities 2.95 
23 Construction 4.42 
31-33 Manufacturing 2.14 
42 Wholesale Trade 2.92 
44-45 Retail Trade 2.37 
48-49 Transportation and Warehousing 4.22 
51 Information 4.17 
52 Finance and Insurance 3.71 
53 Real Estate and Rental and Leasing 3.95 
54 Professional, Scientific, and Technical Services 6.24 
55 Management of Companies and Enterprises 6.24 
56 Administrative & Support and Waste Management & Remediation Services 3.43 
72 Accommodation and Food Services 3.71 
81 Other Services (except Public Administration) 3.95 

Note: Annual log growth rates for current-dollar investment averaged for 2003–2021. 

Table 10 demonstrates that average annual growth in current-dollar investment in data assets was as low 

as 2.1 percent for Manufacturing and as high as 6.2 percent for Management of Companies and PST 

Services. Average annual growth rates by NAICS sector exceeded the aggregate average annual growth 

rate of 4.2 percent for Construction (4.4 percent), Transportation and Warehousing (4.2 percent), PST 

Services (6.2 percent), and Management of Companies (6.2 percent). 

In figure 6, the largest shares of NAICS sector value-added show up for Management of Companies 
(NAICS 55), Administrative Services (NAICS 56), PST Services (NAICS 54), and Finance and Insurance 

(NAICS 52). The smallest shares of NAICS sector value-added show up for Agriculture (NAICS 11), 
Real Estate (NAICS 53), Accommodation and Food Services (NAICS 72), and Other Services (NAICS 

81). 

5.2.2. Real Growth 

We compare the log growth in real value-added for NAICS sectors with and without our experimental 
estimates of business sector investment in data assets for 2003–2020. We recalculate measured NAICS 

sector prices using Törnqvist expenditure shares. We report average and cumulative annual growth in 

real value-added growth by NAICS sector in table 11. Consistent with the result for business sector 
real value-added in table 7, the change in average annual growth is positive for each NAICS sector. 
When data investment is added, the largest increases in average real value-added growth show up for 
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Table 11. Growth in real value-added with and without investment in data assets by NAICS 
sector 2003–2020 (%) 

Average Cumulative 

NAICS With data W/o data Δ With data W/o data Δ 

11 2.57 2.57 0.00 46.28 46.24 0.04 
21 2.52 2.50 0.02 45.32 44.95 0.37 
22 1.66 1.64 0.02 29.93 29.55 0.38 
23 −0.68 −0.73 0.05 −12.22 −13.2 0.98 
31-33 1.65 1.61 0.04 29.69 29.06 0.63 
42 1.54 1.50 0.05 27.81 26.98 0.83 
44-45 1.17 1.14 0.03 21.03 20.52 0.51 
48-49 1.44 1.39 0.05 25.92 25.01 0.91 
51 5.41 5.40 0.02 97.47 97.16 0.31 
52 1.61 1.54 0.07 28.92 27.63 1.29 
53 1.91 1.91 0.01 34.45 34.32 0.13 
54 3.05 2.89 0.17 54.98 51.95 3.03 
55 2.57 2.38 0.19 46.35 42.89 3.46 
56 2.73 2.65 0.08 49.11 47.65 1.46 
72 −0.51 −0.54 0.03 −9.2 −9.68 0.48 
81 −1.15 −1.19 0.03 −20.74 −21.33 0.59 

Note: The table reports average and cumulative log growth rates in real value-added by NAICS sector with and 
without data investment for 2003–2020. NAICS price indexes are recalculated using Törnqvist expenditure shares. 

Management of Companies (NAICS 55, 19 basis points), PST Services (NAICS 54, 17 basis points), 
Finance and Insurance (NAICS 52, 7 basis points) and Administrative Services (NAICS 56, 8 basis 
points). Increases in cumulative real value-added growth are also largest for those NAICS sectors. The 

smallest increases in average and cumulative real value-added growth show up for Agriculture (NAICS 

11), Mining (NAICS 21), Utilities (NAICS 22), Information (NAICS 51), and Real Estate (NAICS 53). 

5.2.3. Non-Profit Institutions Serving Households 

While core experimental results for the paper are limited to the business sector, table 12 reports supple-
mental experimental results for current-dollar investment in data assets for NAICS sectors that represent 
the NPISH sector. For the period 2002–2021, table 12 shows the total current-dollar investment in data 

by NPISH was $552 billion. The largest dollar investments were made in Health Care and Social As-
sistance ($329 billion), which is fourth largest when compared with the business sector. The second 

largest dollar investments by NPISH were made in Educational Services ($149 billion). 
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Table 12. Current-dollar investment in data assets for NPISH 2002–2021 

NAICS Description ($B) 

61 Educational Services 149 
62 Health Care and Social Assistance 329 
71 Arts, Entertainment, and Recreation 23 
813 Religious, Grantmaking, Civic, Professional, and Similar Organizations 51 

Total 552 

Note: Current-dollar estimates summed for 2002–2021. 

6. Conclusions 

In this paper, we measure the value of own-account data stocks and flows for the U.S. business sector 
by summing the production costs of data-related activities implicit in occupations. In our experimental 
estimates, we find that annual current-dollar investment in own-account data assets for the U.S. business 
sector grew from $84 billion in 2002 to $186 billion in 2021, which yields an average annual growth of 
4.2 percent. Cumulative current-dollar investment for the period 2002–2021 was $2.6 trillion. Overall, 
our results indicate that business sector investment in own-account data grew moderately faster than 

other business sector economic activity and slower than business sector investment in software. 

The method we use in the paper augments the traditional sum-of-costs methodology for measuring other 
own-account intellectual property products in national economic accounts by proxying occupation-level 
time-use factors using a machine learning model and the text of online job advertisements (Blackburn 

2021). The method appears to be a feasible method for identifying occupations engaged in data-related 

activities and for estimating the time-effort that occupations allocate to data-related activities. The 

time-use factors we develop for occupations engaged in own-account data appear to have some overlap 

with the time-use factors we develop for occupations engaged in own-account software, which suggests 
an incentive to jointly estimate own-account data and own-account software to ensure consistency and 

prevent double counting if the scope of own-account software is expanded to include more occupations 
in the future. 

In the future, we plan to expand the scope of estimation to include the NPISH and government sectors. 
In addition, this paper focuses on estimating current-dollar values and uses the depreciation rate for 
BEA’s measures of own-account software as a proxy to calculate net stocks. Thus, important areas 
of development in the future will be a price index and depreciation rate specific to own-account data. 
Likewise, an important area for further development will be estimates of purchased data assets and more 

precise adjustments for data output used in capital formation. 
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