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Abstract 

Obtaining access to real-world health data is a significant challenge, mainly due to privacy and security 
implications. Consequently, researchers and technology innovators ̶ particularly those operating in the 
health data science and AI technology development spaces – increasingly resort to synthetic health data 
to bridge the data gap. High-quality synthetic data has the potential to expedite research and 
development of novel technologies. However, synthetic health datasets in Canada are scarce, and no 
existing synthetic health datasets conform to the Findable, Accessible, Interoperable, and Reusable (FAIR) 
standards. Moreover, while federated machine learning offers the advantage of protecting patient privacy 
by not requiring the exchange of source data across nodes, it has yet to be optimized in Canada’s health 
research environment, and there is limited use of federated learning with synthetic health data. This paper 
explores the ethical considerations and value proposition of generating and sharing synthetic health data. 
Our goal is to facilitate the development of a reliable and sustainable synthetic data infrastructure that 
supports the ethical, responsible, and efficient use of synthetic health data. An important contribution of 
this research is the establishment of a framework that balances the social benefits of innovation from 
data sharing with the social costs that occur when individual privacy is compromised. The use of synthetic 
data significantly reduces the potential for individual harm and is a cost-effective means to lower data-
sharing costs. We believe that this framework will pave the way for a more robust and secure synthetic 
data ecosystem, enabling the generation of valuable insights that can drive positive health outcomes for 
Canadians.  
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I. Introduction 

The effective management and sharing of health data, especially electronic medical 

records (EMRs), is often impeded by diverse information systems and data formats. This 

fragmentation poses significant challenges in achieving seamless integration, standardized data 

representation, and efficient sharing across healthcare and technology innovation ecosystems. 

(Kokosi et al., 2022; Kokosi & Harron, 2022). The handling of health data has been subject to 

stringent regulation under various laws, such as the Health Insurance Portability and 

Accountability Act (HIPAA) in the United States (US), the Personal Information Protection and 

Electronic Documents Act (PIPEDA) in Canada, and the General Data Protection Regulation 

(GDPR) in the European Union (EU) (Shapiro, 2022). In their quest to test theories, models, 

algorithms, or prototypes, researchers and developers frequently rely on de-identified or 

anonymous, aggregated health data. However, it takes substantial time and resources to 

retrieve, aggregate, and de-identify data before it becomes accessible (Kokosi et al., 2022; Kokosi 

& Harron, 2022). Legal and ethical sharing of real health data remains challenging, despite 

initiatives like the Open Data Charter, which promotes Open Science and accessibility through 

data sharing (Huston et al., 2019). Nonetheless, successful examples like the Medical Information 

Mart for Intensive Care (MIMIC), a large, open healthcare database, have demonstrated the value 

of sharing real-world healthcare data for research and innovation (Johnson et al., 2016).  

One potential solution to this challenge is the creation of realistic, high-quality synthetic 

health datasets that mimic the complexities of the original data but do not contain any real 

patient information (Kokosi et al., 2022). The Clinical Practice Research Datalink (CPRD) in the 

United Kingdom (UK) and the Agency for Healthcare Research and Quality in the US have made 

synthetic datasets available for research (Synthetic data, n.d.; SyH-DR, n.d). Synthetic health data 

can be valuable for health and data science education, ML/AI algorithm development, and health 

technology innovation, while safeguarding patient privacy, diversifying datasets, and enhancing 

health and innovative research (Gonzales et al., 2023).  

In Canada, however, there is a scarcity of high-quality, sharable synthetic health datasets 

that adhere to Findable, Accessible, Interoperable and Reusable (FAIR) standards, despite 
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Canada’s involvement in the Common Infrastructure for National Cohort in Europe, Canada, and 

Africa (CINECA) projects (CINECA, n.d.). Furthermore, there are Collective benefits, Authority to 

control, Responsibility, Ethics (CARE), and the First Nations principles of Ownership, Control, 

Access, and Possession (OCAP) pertaining to indigenous data (Carroll et al., 2021; Mecredy et al., 

2018; Wilkinson et al., 2016), but applying or implementing these principles in generating and 

sharing synthetic health data remains both challenging and limited. 

With the advent of Machine Learning (ML) and Artificial Intelligence (AI) techniques, 

researchers and industry have been exploring various deep learning models to generate high-

quality synthetic data (Gonzales et al., 2023; Hernandez et al., 2022). Among these, generative 

adversarial networks (GANs) and their variants have emerged as promising synthetic data- 

generation approaches (Goodfellow, et al, 2014, Xu, et al, 2019, Gonzales et al., 2023; Hernandez 

et al., 2022; Murtaza et al., 2023). One advantage of AI techniques for generating synthetic data 

over conventional de-identification methods is the potential for high-fidelity data quality with a 

very low risk of one-to-one reverse-engineering (i.e., re-identification) back to the original health 

data at the population level (El Emam et al., 2020; Hernandez et al., 2022; Rajotte et al., 2022). 

Additionally, federated learning shows promise as another technique to safeguard data privacy 

and security by training AI models without centralizing datasets across multiple network nodes, 

therefore further reducing the potential for critical data compromises (Antunes et al., 2022; 

Brisimi et al., 2018). However, optimization and broader implementation remain ongoing 

challenges for federated learning.  

Combining generative AI models and federated learning to generate synthetic health data 

following FAIR principles, with additional consideration of the CARE principles for Indigenous 

data, can create a robust and optimal health data network. Such an approach would protect 

sensitive patient data and accelerate health research and innovation (Antunes et al., 2022; 

Brisimi et al., 2018). While AI researchers are constantly seeking new ways to improve the 

performance of synthetic data generation, other important aspects, such as trust, transparency, 

and governance of synthetic health data, still require comprehensive study and consensus 

building. This paper presents key considerations for establishing a pan-Canadian synthetic health 

data ecosystem which aims to enable learning health systems and foster health technology 
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innovation, providing the foundation for future research and implementation in synthetic health 

data. An important, new contribution is the establishment of a cost-benefit framework that can 

be used to determine the net social benefits of the sharing of synthetic health data. 

II. Synthetic Health Data Landscape 

A rapid scoping review was conducted to review the literature exploring the use of 

synthetic health data related to health research, in general, by following the Preferred Reporting 

Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) 

and the World Health Organization’s (WHO) rapid review approach (Tricco et al., 2012, 2017). 

Searches were completed on PubMed, Scopus, and Google Scholar using the keywords and 

variations listed in Table 1. We included peer-reviewed articles and grey literature written in 

English and published between January 1, 2012 and March 31, 2023. Meta-analyses were 

excluded because they yielded unrelated articles simply due to the term “synthetic” in the search 

queries. Methodological papers related to improvements of models or AI algorithms were also 

excluded due to the topic having been reviewed extensively in existing literature (Gonzales et al., 

2023; Hernandez et al., 2022; Murtaza et al., 2023). 

synthetic health data, synthetic data quality, synthetic data utility, synthetic data 

governance, synthetic data privacy, synthetic data sharing, data consents, indigenous health 

data, indigenous health data governance 

Table 1 keywords and variants used for literature search. 

Methodologies and results of this review can be found in this paper (Tsao, et. al, 2023). 

Key Finding I: Data Sources Used to Generate Synthetic Health Data 

Data sources used for generating synthetic health data can be broadly categorized as 

follows: (1) EMRs, (2) health insurance claims, (3) other administrative or health surveys, (4) 

bioinformatics, (5) medical images, and (6) sensor data. Depending on how synthetic health data 

is generated, data in these categories can be treated as longitudinal or cross-sectional in 

corresponding studies. Further, despite significant advancements in Natural Language Processing 

(NLP) techniques, particularly the recent emergence of large language models (LLMs) like 
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ChatGPT (Brekke et al., 2021; Tang et al., 2023), unstructured health data, such as doctors’ notes 

in the EMRs, have been underutilized in synthetic health data generation.  

Researchers often rely on open health data, such as the MIMIC-III (Johnson, et. al., 2016), 

in synthetic health data algorithm development. This open dataset is attractive not only because 

it is freely available, but also because it enables the reproducibility of research.  While it is widely 

acknowledged that synthetic health data offers benefits such as preserving privacy, accelerating 

research, and driving innovations (Chen et al., 2021; Rajotte et al., 2022), some caution against 

its usage. Current barriers to the adoption of synthetic health data are discussed below.  

Key Finding II: Concerns Regarding Research Ethics and Legal Regulations 

 Typically known as the Institutional Review Board (IRB) in academic health centres, or the 

Research Ethics Board (REB) in Canadian universities, research ethical governance bodies have 

universally agreed that studies involving any original or real health data require ethics approval 

according to operative legal regulations (Bassan & Harel, 2018; Nass et al., 2009). However, there 

is a lack of consensus within Canada’s REBs when it comes to studies exclusively using synthetic 

health data. In contrast to de-identified or anonymous real patient data, the regulatory landscape 

governing synthetic health data and safeguarding patient privacy has remained ambiguous (Bill 

C-27, n.d.). This ambiguity has impacted the generation and sharing of synthetic data in Canada, 

with REBs granting ethics approval on a case-by-case basis for such research. Consequently, many 

legal and ethical questions surrounding synthetic health data in Canada remain unanswered 

(Arora & Arora, 2022).  

In the context of the EU’s GDPR, synthetic data can be categorized as pseudonymous data, 

anonymous data, or both, depending on the specific context of its use (López & Elbi, 2022). In the 

US, if synthetic data is appropriately created, it is exempt from the HIPPA regulations (Varma, 

2022). Conversely, in Canada, neither PIPEDA nor the Consumer Privacy Protection Act (CPPA) 

explicitly addresses synthetic data, as Canada is still undergoing legal reform in this area. (Bill C-

27, n.d.). Another significant concern involves patients’ informed consent. In the US, HIPAA 

classifies the creation of de-identified data as the healthcare operations of a covered entity, thus 
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eliminating the requirement for informed consent from patients, even if the de-identified data 

will be used for research (Nass et al., 2009).  

In the EU, synthetic health data can be considered as either de-identified or anonymous 

data under the GDPR, but regardless, informed consent is still mandated (Shapiro, 2022). In 

contrast, Canada’s PIPEDA and CPPA generally require organizations to obtain informed consent 

when individuals’ personal information is collected, used, or disclosed (Shapiro, 2022). The lack 

of clarity in PIPEDA and CPPA has made synthetic health data a grey area, resulting in potentially 

lengthy and inconsistent ethical reviews impeding health research and innovation. 

Key Finding III: Evaluation of Synthetic Health Data  

Synthetic Data generation algorithms, and the quality, utility, and privacy risks of the 

generated synthetic data, are interrelated. So far, there have been no universal standards to 

generate synthetic health data, although the use of AI/ML techniques, such as the Generative-

Adversary Networks (GANs) have been gaining attention in the generation of such data (Gonzales 

et al., 2023; Hernandez et al., 2022; Murtaza et al., 2023). These models produce high-quality 

synthetic data (provided that the real-world data is also high-quality) by preserving the cohort 

characteristics and trends in the real-world data. However, overfitting in these models can be 

problematic for privacy preservation, as it can cause some synthesized records to be too similar 

to the real-world data (Bhanot, et al., 2021). 

Given no common methods for generating synthetic health data, there are no standard 

evaluation metrics to assess the quality, utility, and re-identification risks of synthetic health data. 

Individual studies generally have their own evaluation metrics to examine how closely the 

synthetic health data reflect their data sources and specific use cases. Gordon et al. (2021) 

proposed a data-utility evaluation matrix as a framework for health data curation, which can be 

modified to evaluate synthetic data. Gordon’s data-utility framework consists of five categories: 

data documentation, technical quality, coverage, access provision and value, and interest. Each 

category has four quality levels, ranging from bronze, the lowest quality, to platinum, the highest 

quality (Gordon et al., 2021).  This framework can be adapted for the evaluation of synthetic 

health data. 



7 
 

Key Finding IV: Generating Synthetic Health Data in the Indigenous Data Governance Context 

Currently, there are no standardized data-sharing principles for synthetic health data. 

However, the FAIR and CARE principles are the two main guidelines for data sharing, with the 

latter addressing Indigenous data (Carroll et al., 2020; Kush et al., 2020; Wilkinson et al., 2016). 

The FAIR principles have frequently been applied to real-world datasets, with FAIRsharing.org as 

a platform to share data that meets the FAIR principles (Sansone et al., 2019). However, 

implementing the FAIR principles has remained limited for synthetic health data sharing. 

In the synthetic health data network, ensuring the inclusion of Indigenous people’s data 

and upholding their right to control and access it is paramount (Carrol et al., 2021). Historical 

injustice and unethical treatment of Indigenous peoples have strained relationships between 

Indigenous peoples and the government, leading to data-sharing restrictions (Bosacrino et al., 

2022). The exclusion of Indigenous datasets poses limitations in fields such as synthetic health 

data, which could greatly benefit from insights provided by Indigenous datasets to develop FAIR 

and CARE ML/AI techniques. The scarcity of representative Indigenous datasets impacts the 

accuracy and generalizability of generative models, inadvertently introducing biases and 

influencing data-driven decisions regarding Indigenous health.  

To promote healthcare access and equality for Indigenous peoples, accurate Indigenous 

data representation is essential (Walker et al., 2017). Synthetic health data offers a promising 

solution to bridge this knowledge gap. However, this goal requires partnerships between the 

Indigenous community, AI community, and data governance agencies to address this limitation. 

Presently, there is no comprehensive governance framework for generating and utilizing 

indigenous synthetic health data. However, the FAIR and CARE principles can serve as the 

foundation for Indigenous synthetic data governance. The FAIR principles can act as guidelines 

for data producers and repositories, and the CARE principles can extend to the ‘people’ or 

‘purpose’ of why that data is being used (Carrol et al., 2021). While data stakeholders inform data 

reuse and research reproducibility, the CARE principles can address historical inequities and 

provide Indigenous peoples with a platform for preserving data sovereignty.  
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Generative AI holds great promise for advancing health research and accelerating 

technology innovations. Despite its potential, generative AI’s widespread adoption and utilization 

in the health sector are yet to be fully realized. To ensure its responsible and effective application, 

there is a pressing need for further research and the establishment of regulatory guidelines 

focusing on data governance and quality evaluation standards. In light of this, we present the 

following recommendations. 

III. Recommendations from a FAIR and CARE Approach 

Recommendation I: Establishing Synthetic Health Data Governance Guidelines 

Conducting a comprehensive policy analysis concerning synthetic data governance is 

imperative to compare the EU’s GDPR, the US’s HIPAA, and Canada’s PIPEDA, CPPA, and 

proposed Artificial Intelligence and Data Act (AIDA) (Bill C-27, n.d.). This policy analysis would aim 

to understand how the EU and US address synthetic health data, as compared to Canada, identify 

potential gaps in policies related to synthetic health data, and formulate recommendations for 

policy amendment or changes in Canada.  

Additionally, this policy analysis would examine the methods necessary (if any) to obtain 

patient consent regarding the use of health data to generate synthetic health data. Following the 

completion of the policy analysis, a systematic three-round electronic Delphi survey (Nasa et al., 

2021; Okoli & Pawlowski, 2004) will be conducted, inviting experts, data owners (i.e., patients), 

data custodians, and data users to co-design the ethical guidelines and synthetic health data 

governance framework.  Key players shaping Canada’s data strategy include Canadian citizens, 

the Canadian Institute for Health Information (CIHI), Health Canada, Statistics Canada, the First 

Nations Information Governance Centre (FNIGC), the ethics review boards within academic 

institutions, and health organizations will work together to co-design the ethical guidelines and 

data governance framework. Their trust and collaboration are instrumental in the successful 

development and deployment of synthetic health data research and data use.  

Throughout the Delphi study, an extensive list of factors crucial to the governance of 

synthetic health data will be identified, with particular attention to factors aligned with the FAIR 

and CARE principles. The team will assess the level of agreement among experts and potential 
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users regarding the importance of these factors, aiming to bridge the differences and similarities. 

Should further clarification be necessary, stakeholders will be interviewed after the Delphi 

surveys. Furthermore, most current consent directives for EMRs do not stipulate the potential 

use of patients’ information for producing synthetic health data to be used by hospitals and third-

party entities. Policy updates need to explicitly address whether synthetic health data will be 

governed as human subject data or otherwise. Clear and specific policy guidelines are essential 

in establishing a standardized framework that governs the generation and ethical use, protection, 

and sharing of synthetic health data. Such guidelines will ensure transparency, accountability, 

and compliance with regulatory requirements, ultimately fostering trust among stakeholders and 

facilitating data-driven research and innovation in the health domain.  

Recommendation II: Demonstrating the Responsible and Beneficial Use of Synthetic Health Data  

The deep learning models for synthesizing data, the usefulness of the generated health 

data, and privacy concerns over the sharing of such data are interrelated.  While the list of 

companies specializing in synthetic data generation is expanding, including Replica Analytics®, 

MDClone®, Mostly AI®, to name a few, it is important to note that there is no one-size-fits-all 

standardized algorithm or commercial tool available for generating high-quality synthetic health 

data. Challenges arise due to the health data’s high-dimensional nature and complex 

interrelations. Major data custodians, such as hospitals, CIHI, and Statistics Canada, are key 

players in exploring the benefits and limitations of generative AI algorithms. Conducting in-depth 

assessments of the privacy risks and the utility associated with specific use cases of such data can 

offer valuable insights.  By gaining deeper insights into the potential and challenges of generating 

and using synthetic health data, all stakeholders can make responsible and well-informed choices 

that align with their specific objectives and data privacy considerations. These explorations will 

undoubtedly pave the way for more informed decisions regarding the incorporation of synthetic 

health data in data-management strategies across the entire spectrum of the Canadian health 

research and innovation ecosystem.  
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Recommendation III: Establishing Standards for the Evaluation and Publication of Synthetic 

Health Data 

The existing literature on the evaluation of synthetic health data reveals knowledge gaps 

that require further exploration. Because generative AI algorithms are normally tailored for 

specific types of data (i.e., images, tabular data, time series, or genome data) and fine-tuned for 

specific use cases (i.e., software testing, epidemiological study, operation optimization), it is 

important to assess the quality and value of synthetic health data to fulfill these diverse needs. 

However, there are no universal evaluation metrics to assess the performances of generative AI 

models and the quality of synthetic health data. Evaluation metrics will be co-developed to assess 

model performances and the quality of synthetic health data based on FAIR and CARE principles. 

The key components of synthetic data assessment can be categorized into the following 

three dimensions:  

Privacy Risk: The calculation of the privacy risk involves assessing the uniqueness or 

(re)identifiability of individuals in the dataset. Since data imbalance is common in health data, it 

is imperative to employ best practices to eliminate the risk of re-identification in the original data 

before using it to generate synthetic data. Using privacy-preserving ML/AI models to generate 

synthetic health data should be investigated and encouraged.  When calculating the privacy risk, 

synthetic health data can be assessed for the risk of re-identification with a common threshold 

of 0.09 (El Emam et al., 2020). Additional measurements, such as cosine-similarity (NIST, n.d) 

between a record in the synthetic dataset and one or more records in the original dataset, can 

serve as valuable tools to further mitigate the risk of synthetic data records matching those in 

the original dataset.  

Fidelity and Utility: In comparative studies of synthetic data quality, the evaluation 

typically assesses how closely synthetic variable distributions resemble those of the respective 

real-data variables.  The correlation matrix of key variables serves as another common measure 

of gauging the fidelity between synthetic and real datasets. Additionally, the quality of synthetic 

data is further scrutinized by examining the performance of a machine learning model(s) built 

with both synthetic and real datasets (Muller et al. 2022, Foraker et al., 2020, El Emam et al. 
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2021).  These empirical indicators provide valuable insights into the data quality of a given 

synthetic dataset.  

However, it is important to acknowledge that such evaluations are not exhaustive and 

are highly dependent on specific use cases and the intended goals of the model.  Nonetheless, 

establishing a minimal set of fidelity measurements and benchmarking machine learning 

models for assessing the utility of synthetic data will mark a significant step towards 

standardizing synthetic data quality measures. Publishing these quality indicators will bolster 

confidence in synthetic data generation and ensure responsible and informed usage by third 

parties, equipped with explicit knowledge of the limitations inherent in the synthetic dataset. 

Cost-Benefit Assessment: Similar to health technology assessment (HTA), there is a 

need for a cost-benefit framework that quantifies the societal impacts of generating and using 

synthetic health data for research and commercial purposes. The first challenge in developing 

this cost-benefit analysis framework is accurately capturing the costs and benefits to each 

stakeholder. The first step involves recommending a measurement to calculate the benefits of 

creating and sharing synthetic health data. In HTA, the quality-adjusted life years (QALY) is used 

to evaluate how well medical treatments lengthen and/or improve patients’ lives. In the 

evaluation of synthetic health data, the benefit derived from its utilization may not be directly 

reflected in QALY. The benefit measurement may require consideration of additional factors, 

including the likelihood of improved patient well-being resulting from the proposed research or 

commercial products.  This encompasses advanced data analytics and the value of innovative 

technology, which could lead to better patient outcomes and optimized healthcare delivery.  

The second challenge is estimating the probability of individual privacy compromise when 

releasing synthetic health data. Privacy breaches could arise either through membership 

inferencing or reverse engineering of the synthetic health data itself, or its combination with 

other external sources of information. Merely assessing re-identification probability is 

insufficient to fully evaluate the overall costs of synthetic health data release. It is important to 

estimate the potential harm that could be inflicted upon individuals to capture the total potential 

costs borne by stakeholders.  
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Furthermore, this framework must consider the diverse range of stakeholder groups, 

considering the potential systemic harmful effects experienced by certain marginalized 

communities.  Improper handling of synthetic data generation could exacerbate systematic bias 

in the original data. Therefore, a comprehensive approach is necessary to ensure that equity, 

diversity, and inclusion (EDI) considerations are effectively integrated into the cost-benefit 

analysis. 

As we consider the broader use of synthetic health data, we must be vigilant in avoiding 

the “garbage in, garbage out” problem, recognizing the significance of the quality of the original 

(i.e., real) data. Synthetic data presents a promising venue to mitigate privacy risks while 

permitting the sharing of data, thereby promoting the democratization of data for diverse 

applications. Such data usage will help identify potential data gaps and quality issues and 

incentivize data owners and custodians to prioritize the maintenance of high-quality original 

data.  This, in turn, fosters a positive cycle of data-driven advancement in Canada’s health 

ecosystem.  

IV.  Establishing Cost-Benefit Guidelines for Health Data Sharing 

Building on the above discussion, this section establishes a cost-benefit framework for 

sharing health data, along with implications for synthetic data use. There is a general dearth of 

cost-benefit methods that can be used to evaluate societal net benefits from data sharing. Cost-

benefit analysis in health research, including drug invention, is typically calculated using Quality 

Adjusted Life years (QALY), which cannot be used to directly evaluate the impact of data sharing. 

From a more general perspective, most cost-benefit methods are based on economic analyses 

that are primarily focused on net gains to different stakeholders. For example, in evaluating the 

societal impacts of merger decisions between firms, the Competition Bureau of Canada compares 

the economic costs that might occur to consumers who might pay higher prices as a result of a 

lessening of market competition, which are then weighed against gains to merging parties in the 

form of cost savings.1 The methodology used by the Competition Bureau is known as ‘Total 

Surplus.’ The Treasury Board of Canada (2022) also recommends a similar approach in weighing 

 
1 Please see CompeƟƟon Bureau of Canada (2011) Merger Enforcement Guidelines for further details.  
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quantifiable benefits to different stakeholders versus corresponding costs, to determine the 

desirability of competing public-sector projects. If the marginal or incremental benefits of such 

projects exceed the incremental costs, then the project should be undertaken. It is important to 

emphasize that the benefits and costs that should be measured, are those that would otherwise 

have not occurred but for the project.2  

Returning to the example of merger analysis, the key economic cost is the ‘deadweight 

loss’ that occurs, if the merging firms have the market power to increase prices to consumers. 

Higher prices should lead to increased profits if demand for the product does not decline 

significantly. Part of these profits are generated at the expense of consumers who continue 

purchasing the goods, but at higher prices. The Competition Bureau does not count the higher 

prices paid by consumers as an economic cost of the merger. This is considered a transfer of 

economic surplus from consumers to producers. However, higher prices also imply that there will 

be consumers who can no longer afford the goods. The deadweight loss to society is the lost 

value that these consumers placed on the goods, which they can no longer afford. Firms also lose 

some profits if higher prices result in reduced demand. This lost ‘producer surplus’ is also counted 

as lost surplus. The total deadweight loss to consumers and producers are weighed against the 

gains to the merging firms in terms of ‘efficiencies,’ which are reductions in the incremental costs 

of doing business, which would not have occurred but for the merger. If these efficiency gains to 

the merging firms exceed the deadweight loss, then the merger will not be blocked by the 

Competition Bureau. This is true, even if the price increases from the merger are significant. 

Hence, merger analysis is based on stakeholder analysis, where the incremental costs are 

deducted from the incremental benefits, to evaluate gains to society. To accomplish this, it is 

necessary to assume that all stakeholders value a dollar equally, which in some cases, might be 

a strong assumption. Further, no stakeholder receives preferential treatment, as the use of the 

Total Surplus approach implies that dollar gains/losses to producers and consumers are 

comparable. In other words, if a consumer gains a dollar at the expense of a firm or producer, 

 
2 For these guidelines please refer to the Treasury Board of Canada (2022) Guide to CosƟng 
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this is just a transfer of resources, and there is no net gain to society. Our construction of a cost-

benefit approach to data sharing is based on similar principles. 

Our objective is to understand the optimal amount of data access for society. Hence, the 

first step is to define the stakeholders who benefit from enhanced data sharing. Assume the 

existence of data (d), which is of interest to academic researchers who are interested in creating 

knowledge that will result in some benefit (B) to society. Further, there is a data custodian who 

has authority with respect to granting researchers third-party access to data. The data custodian 

does not gain any direct benefit from allowing access to data, but experiences costs (C) in 

establishing infrastructure that stores data and enables access by researchers. The data 

custodian must use a societal framework model to evaluate whether allowing data access leads 

to net gains for society. As noted above, releasing the data allows third parties to conduct 

research and extract insights which leads to a societal benefit. To simplify our model, we will 

assume that the data may only be used by academics for publishable research. The mandate of 

the data custodian is to ensure that societal benefits from knowledge creation are maximized 

while minimizing the probability of individual privacy being compromised. This is because the 

trade-off to knowledge creation from allowing access to data, is the probability that individual- 

specific information contained in the database may be revealed, despite the use of privacy 

preserving technology by the data custodian. The cost of employing these technologies is also 

captured by C.  

If an individual’s privacy is compromised, then we assume that they will experience some 

harm (H), which can be monetary or non-monetary. The variable H captures both the probability 

of being harmed as well as the actual monetary and non-monetary amount of harm. We assume 

that sharing more data leads to a higher probability of data being accessed by unauthorized third 

parties, and therefore, an increase in possible harm (H) to individuals, which increases at an 

increasing rate. Hence, if  H = H(d), then  𝜕𝐻
𝜕𝑑ൗ > 0 and 𝜕

ଶ𝐻
𝜕𝑑ଶൗ  > 0. In terms of other costs, 

the data custodian experiences economies of scale in maintaining data infrastructure and the 

employment of data-protection technologies. Specifically, while there are significant upfront 

costs in creating the infrastructure, average and marginal costs are equal and decline with each 



15 
 

unit of data held by the custodian. Therefore, 𝜕𝐶
𝜕𝑑ൗ < 0 and 𝜕

ଶ𝐶
𝜕𝑑ଶൗ  < 0. As noted above, the 

other cost in this model is the possible harm to individuals whose information is somehow 

retrieved by third parties who do not have permission to access the data. If societal costs (SC) are 

the sum of the operations costs of the data custodian and possible harm to individuals then the 

societal cost curve will be initially falling, but will start rising with increasing harm, which will 

occur as more data are released. We initially assume that the data custodian is not liable for the 

harm experienced by individuals who experience a data breach. The gap between the private 

cost curve of the data custodian and the societal cost curve is the amount of harm to individuals 

from privacy breaches.   

Societal benefits from knowledge creation initially are an increasing function of data 

access or each unit of data. In terms of notation, this is  B = B(d). However, there is a plateau, 

beyond which no further benefits are created, even through access to more data. Hence, 

𝜕𝐵
𝜕𝑑ൗ > 0 and 𝜕

ଶ𝐵
𝜕𝑑ଶൗ  < 0 up to a certain threshold,  𝐵 =  𝐵ത , after which 𝜕𝐵

𝜕𝑑ൗ = 0. The 

optimal amount of data release is then defined at the point where the slopes of the marginal 

benefit and marginal costs (of the data custodian) are equal at zero. Figure 1 shows the basic 

equilibrium with the societal benefit and cost curves and the cost curve of the data custodian.  

The privately optimal amount of data release, if the only costs are those experienced by 

the data custodian, is given by 𝑑 = �̅�. Taking harm to individuals into consideration, the optimal 

amount of data release is given by 𝑑 = 𝑑∗, where the slope of the societal benefit and cost curves 

are equal. This will be to the left of �̅� as the SC curve will start rising before the minimum point 

of the custodian cost curve. This model provides a framework for estimating net societal benefits 

from data sharing that is analogous to approaches used by other agencies. The important lesson 

is that the data custodian must compare the marginal benefits of data release against the 

corresponding marginal social costs. These benefits and costs can be calculated by the 

corresponding areas beneath the curves with respect to the amount of data being released.3 For 

example, suppose the data custodian receives a request for d2-d1 amount of data. The marginal 

 
3 Of course, an underlying assumpƟon is that equaƟons for these curves can be esƟmated. This is possible through 
econometric methods developed by economists, as long as relevant data are available. 
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benefit to society is given by area ABCD. The corresponding marginal social cost is CDEF. As 

society will receive a marginal benefit of ABCD, it makes sense for the data custodian to release 

the data. 

 

Figure 1 Basic Cost-Benefit Model 

Let us further explore the implications of this model through a hypothetical example. 

Suppose the data custodian is responsible for individual patient records at a hospital. The 

custodian decides to release data in response to a request from an accredited researcher 

interested in developing new insights on patient treatment.  Releasing the data always carries 

some risk of individual identification. Recent research has demonstrated that re-identifying 

individuals is possible even when released data are a partial sample of the entire dataset and 

with a limited number of variables (Rocher, et. al,2019). However, there is less consensus on the 

precise harm an individual may experience if they are re-identified in a dataset. In the absence 

of available published data for Canada, we shall assume that the individual experiences a loss of 

$20,000. This could occur if successful re-identification leads to information that enables a third 

party to launch a successful phishing or ransomware attack.4  

 
4 hƩps://www.cbc.ca/news/canada/toronto/bmo-scam-line-of-credit-two-factor-1.6947461.  
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What must also be considered is the probability of a successful attack, which is different 

from the probability of re-identification. For example, even if an individual’s information 

becomes available to a third party, the third party may not be able to execute a successful attack 

if the individual is sufficiently educated on not to respond to phishing attacks or has suitable 

antivirus/anti-malware software installed on their computers. In summary, the above discussion 

suggests that while monetary harm to an individual from a successful attack might be significant, 

the probability of a successful attack may be moderate. Of course, given the absence of data, it 

is difficult to be conclusive, and it is important to acknowledge differences across different 

demographic groups. For example, studies have shown the elderly to be particularly susceptible 

to successful cyberattacks. For simplicity, we assume that individual harm (H) from a cyberattack 

facilitated by the release of patient-level information for research purposes, is captured by the 

below function: 

H = H(pi, pa, M) = pi *pa * M 

Where pi = probability of being re-identified from released data,  pa = probability of a 

successful cybersecurity attack, and M = monetary damage from the cybersecurity attack. 

Essentially, this functional form captures expected harm from data release.   

With the above functional form, an increase in each of the above factors will lead to 

potentially greater harm to individuals who are re-identified from released data. Measuring 

individual harm in this manner allows us to capture how different communities may be affected 

by cybersecurity attacks. For example, particular groups may be more likely to be prone to 

successful attacks, such as seniors who are less likely to be aware of adequate cybersecurity 

protection measures. The harm to them is also probably going to be higher.  

An Example  

Assume that a group of university researchers have submitted a research proposal to 

access confidential, individual patient-level data and the data custodian must evaluate the net 

benefits to society. The objective of the proposed study is to improve decision-making processes 

that have the potential to improve survival rates for cancer patients. This is consistent with Kaur 

et al. (2022), who find that data mining and machine learning techniques are significantly 
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impacting hospital decision-making processes, because of access to large amounts of digital data 

that are typically stored in hospitals (Kaur et al. (2022). As noted by the authors, data mining and 

machine learning methods offer extremely promising new ways to offer effective cancer 

prognoses. In their words: 

“Cancer diagnosis techniques aim to detect the occurrence of cancer in a particular body 

organ of a person. In most cases, clinicians go for a biopsy where a tissue sample is removed from 

the body and analyzed for detection of cancer cells. Depending on the organ and type of cancer, 

different detection methods are available, and correspondingly researchers use some initial 

parameters, gene biomarkers, or CT images, etc. However, the diagnostic systems are not very 

efficient in performance. Since cancer is primarily asymptomatic in earlier stages, it is helpful to 

identify novel diagnostic techniques to reduce cancer mortality cases. With data mining in clinical 

research, various researchers have utilized different machine learning techniques to diagnose or 

classify cancer in other parts of the body.”  

In their review of the literature, Kaur et al. (2022) note that the following patient-level 

information is typically used by studies: (1) Age, Gender, Marital Status; Race; (2) all cancer-

related information diagnosed at the time of examination by the clinician such as Tumor size, 

Cancer type, Stage of cancer, Primary site; (3) Type of treatment (type of surgery, chemotherapy 

cycles, androgen deprivation therapy); and (4) Lifestyle attributes such as 

Smoking/tobacco/alcohol, and other Comorbidities. Guo et al. (2021) use such features in 

machine learning models to estimate the probability of a patient’s individual post-surgery 

conditional risk of death, risk of recurrence, and risk of site-specific recurrence for cervical cancer 

(Guo et al., 2021).  With access to data from multiple institutions, the authors are able to identify 

machine learning methods that offer superior predictions relative to traditional logistic or Cox 

regression models in estimating prognostic outcomes. Most studies on cervical cancer focus on 

estimating the probability of recurrence or death. In contrast, a key contribution of this study is 

the use of advanced models to evaluate the importance of specific recurrence sites (local or 

distant recurrence), which is essential for planning appropriate follow-up strategies. The authors 

use their research findings to construct a web-based calculator to predict postoperative survival 

and site-specific recurrence in cervical cancer patients, which can be employed by clinicians for 
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such strategies. This is important given the traditional reliance by clinicians in using their 

experience and knowledge to assign patients into crude categories as low- or high-risk groups to 

determine post-operative care, without accurately accounting for the specifics of each unique 

patient.  

This example clearly illustrates the societal benefits resulting from access to confidential 

data. In terms of quantifying these benefits, we can use the value of a statistical life 

recommended by the Treasury Board of Canada (2022). The Value of a Statistical Life (VSL) is 

typically used to determine compensation for individuals involved in workplace accidents. VSL 

monetary amounts recommended by studies conducted by economists range from $5 million - 

$6 million. The Treasury Board guidelines note that with a discount rate of 5%, the $5 million 

value of a statistical life translates into a value of a statistical life-year of $305,000, and an 

estimate of $143,000 per life-year given a zero-discount rate. Suppose that improved post-

operative treatment recommended by machine learning algorithms from outcomes facilitated by 

access to confidential data results, on average, in an increase in survival by 10 years for all cervical 

cancer patients treated in a hospital. If the hospital treats 20 patients on annual basis, using a 

conservative life-year value of $150,000, a back-of-the-envelope calculation implies that 

aggregate societal benefits generated for patients treated at the hospital are $30 million.  

However, assume that the sharing these data has compromised the privacy of 1,000 

individuals in the dataset. Further, 80% of individuals have been subjected to successful 

cyberattacks, with an average corresponding financial loss is $30,000. Hence,  pi  = 1, pa = 0.8,  

M= $30,000. Therefore, harm to each individual = H = H(pi, pa, M) = pi *pa * M = 1 * 0.8 * 30,000 

= $24,000. Consequently, aggregate societal harm = 1,000 * $24,000 = $24 million. If a dollar is 

valued equally by all stakeholders in this analysis, then sharing the data has made society better 

off, even though the number of people impacted by the data breach exceeded the number of 

patients who experienced improved survival longevity as Societal Net Benefit = Societal Marginal 

Benefit – Societal Social Cost = $30 m. - $24 m. = $6 million.  Of course, the results are sensitive 

to the underlying assumptions. For example, significantly increasing the number of individuals 

experiencing the data breach to 5,000 implies a Societal Social Cost of $120 m. On the other hand, 

using a $305,000 VSL (based on a 5% discount rate) for 10 years for 50 patients, translates to a 
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Marginal Societal Benefit of $152,000. This methodology can also be extended to calculating 

societal benefits from reduced morbidity. 

This discussion illustrates the sensitivity of findings to underlying assumptions. However, 

it also suggests that individual harm can be significantly attenuated by proper data-sharing and 

data-protection protocols agreed upon between the data custodian and the researchers. Further, 

while we cannot prove this, our belief is that the benefit of an additional life-year to an individual 

is extremely high, while the individual costs from data breaches, which are ubiquitous, might be 

more limited. We, of course, cannot say this for certain, given the absence of relevant data and 

research, but it is not an unreasonable assumption. Nonetheless, there is a need for more study 

on individual costs from unauthorized access to personal data.     

Example with Liability and Synthetic Data 

The above model and example do not consider the reputational harm and liability 

potentially experienced by the data custodian in the event of a successful data breach. The 

reason is that a fine paid by the data custodian is simply a monetary transfer to the impacted 

party, and there is no overall benefit to society. However, making the data custodian liable 

certainly incentivizes them to ensure adequate security protocols. The key point is that from the 

perspective of efficiency, the fine must be proportionate to harm experience through privacy 

loss. If the fine is much higher than the actual harm, then the amount of data sharing will be 

considerably reduced, leading to much lower net societal benefit to society.  

This can be seen in Figure 2, where the data custodian’s cost curve shifts up to C2, as a 

result of the liability imposed on the data custodian, which results in nearly an efficient amount 

of data sharing, with d1 being slightly more than 𝑑∗. Hence, the optimal fine is the monetary 

amount equal to the marginal damage experienced by individuals at the efficient level of data 

sharing, or d = 𝑑∗. This fine is analogous to the motivation behind carbon taxes, which 

theoretically is set to the amount of environmental damage at the point where societal benefit 

is equal to societal costs. The curve C3 represents a scenario with a fine that exceeds true marginal 

harm to individuals, leading to a suboptimal amount of data release (d2). An extremely large fine 

can be interpreted as being ‘punitive,’ and governments wanting to send a strong message to 
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corporations regarding the priority to be given to the protection of individual privacy. However, 

an alternative approach might be through the provision of synthetic data.  

 

Figure 2 Cost-Benefit Analysis with Synthetic Data 

Specifically, releasing synthetic data instead of real individual information, considerably 

reduces the degree of potential individual harm from data breaches. This could theoretically 

ensure that the data custodian is at the amount of efficient data sharing,  𝑑 = 𝑑∗, with its cost 

curve shifting back close to C1, assuming that the costs of producing synthetic data are low. This 

is an extremely important point, as it implies significantly reduced liability for firms, even in the 

event of a data breach. Hence, overall societal costs from data sharing will be lowered, with 

reduced privacy costs to individuals, and therefore, diminished liability costs to custodians as 

well. However, the trade-off is the possibility of reduced societal benefits, if the synthetic data 

are unable to produce insights that are comparable to what can be obtained from the real 

individual-level data. In this case, the societal benefit curve B1 shifts down to B2 and even 

releasing data 𝑑 = 𝑑∗ leads to much lower net social benefits relative to what would occur 

through the release of real data. This can be illustrated with the example that we previously used.   
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As before, we assume that the privacy of 1,000 individuals in a dataset has been 

compromised. However, instead of 80%, only 10% of individuals have been subjected to 

successful cyberattacks, as the data accessed by cyber criminals is synthetic and not real data.  As 

before, the financial loss to each impacted individual is $30,000. Hence,  pi  = 1, pa = 0.10, and M 

= $30,000. Therefore, harm to each individual = H = H(pi, pa, M) = pi *pa * M = 1 * 0.1 * 30,000 = 

$3,000. Therefore, aggregate societal harm = 1,000 * $3,000 = $2 million. Further assuming that 

the insights from the synthetic data were less useful, thus, as a result of the analysis of the data, 

instead of 10 years (in the previous example), cervical cancer patients only experience an increase 

in life expectancy of one additional year. Using the same conservative life-year expectancy value 

of $150,000 for 20 patients, leads to a societal benefit of $3 million. While the net social benefit 

is still positive at $3 million - $2 million = $1 million, it is reduced.   

V. Conclusion 

The movement towards producing high-quality synthetic data from machine learning and 

artificial intelligence methods holds significant promise in terms of producing innovative research 

while preserving individual privacy. What is therefore needed are data governance principles that 

should be followed in Canada, to ensure ethical generation and use of such data, which also 

respect and accommodate the concerns and needs of Indigenous peoples. This work provides 

recommendations for applying the FAIR and CARE principles, which are able to achieve such 

objectives. This paper also presents a cost-benefit framework that can be used to determine 

efficient levels of data sharing, aimed at balancing societal innovation against possible harm to 

individuals from compromises to their privacy. Our framework can be adapted to evaluate the 

net social benefits associated with the use of synthetic health data. Synthetic health data can 

greatly reduce societal costs in the form of lower risk to individual privacy from data breaches, 

and hence, lower liability costs for data custodians. However, the trade-off is the possibility of 

less useful insights from data analysis.  How much less remains an area in need of further study. 

  



23 
 

References 

Antunes, R. S., André da Costa, C., Küderle, A., Yari, I. A., & Eskofier, B. (2022). Federated 

learning for healthcare: Systematic review and architecture proposal. ACM Transactions 

on Intelligent Systems and Technology, 13(4), 1–23. https://doi.org/10.1145/3501813 

Arora, A., & Arora, A. (2022). Synthetic patient data in health care: a widening legal 

loophole. Lancet, 399(10335), 1601–1602. https://doi.org/10.1016/s0140-

6736(22)00232-x 

Bassan, S., & Harel, O. (2018). The ethics in synthetics: statistics in the service of ethics and law 

in health related research in big data from multiple sources. Journal of Law and Health, 

31(1), 87-117. 

Bhanot, K., Qi, M., Erickson, J. S., Guyon, I., & Bennett, K. P. (2021). The problem of fairness in 

synthetic healthcare data. Entropy (Basel, Switzerland), 23(9), 1165. 

https://doi.org/10.3390/e23091165 

Bill C-27: An Act to enact the Consumer Privacy Protection Act, the Personal Information and 

Data Protection Tribunal Act and the Artificial Intelligence and Data Act and to make 

consequential and related amendments to other Acts. (2022, November 4). 

Justice.Gc.Ca. https://www.justice.gc.ca/eng/csj-sjc/pl/charter-charte/c27_1.html 

Boscarino, N., Cartwright, R. A., Fox, K., & Tsosie, K. S. (2022). Federated learning and 

Indigenous genomic data sovereignty. Nature Machine Intelligence, 1-3. 

https://doi.org/10.1038/s42256-022-00551-y 

Brekke, P. H., Rama, T., Pilán, I., Nytrø, Ø., & Øvrelid, L. (2021). Synthetic data for annotation 

and extraction of family history information from clinical text. Journal of Biomedical 

Semantics, 12(1), 11. https://doi.org/10.1186/s13326-021-00244-2 

Brisimi, T. S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I. C., & Shi, W. (2018). Federated 

learning of predictive models from federated Electronic Health Records. International 

Journal of Medical Informatics, 112, 59–67. 

https://doi.org/10.1016/j.ijmedinf.2018.01.007 



24 
 

Carroll, S. R., Garba, I., Figueroa-Rodríguez, O. L., Holbrook, J., Lovett, R., Materechera, S., 

Parsons, M., Raseroka, K., Rodriguez-Lonebear, D., Rowe, R., Sara, R., Walker, J. D., 

Anderson, J., & Hudson, M. (2020). The CARE principles for indigenous data governance. 

Data Science Journal, 19. https://doi.org/10.5334/dsj-2020-043 

Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F. K., & Mahmood, F. (2021). Synthetic data in 

machine learning for medicine and healthcare. Nature Biomedical Engineering, 5(6), 

493–497. https://doi.org/10.1038/s41551-021-00751-8 

CINECA - common infrastructure for national cohorts in Europe, Canada, and Africa. (n.d.). 

CINECA. Retrieved December 12, 2022, from https://www.cineca-project.eu/ 

Competition Bureau of Canada (2011). Merger Enforcement Guideline. Retrieved June 1st 2023, 

from https://ised-isde.canada.ca/site/competition-bureau-canada/en/how-we-foster-

competition/education-and-outreach/publications/merger-enforcement-

guidelines#s12_0.  

El Emam, K., Mosquera, L., & Bass, J. (2020). Evaluating identity disclosure risk in fully synthetic 

health data: Model development and validation. Journal of Medical Internet 

Research, 22(11), e23139. https://doi.org/10.2196/23139 

El Emam K, Mosquera L, Jonker E, Sood H. Evaluating the utility of synthetic COVID-19 case data. JAMIA 

Open. 2021 Mar 1;4(1):ooab012. doi: 10.1093/jamiaopen/ooab012. PMID: 33709065; PMCID: 

PMC7936723. 

Foraker, RE, and others, Spot the difference: comparing results of analyses from real patient 

data and synthetic derivatives, JAMIA Open, Volume 3, Issue 4, December 2020, Pages 

557–566, https://doi.org/10.1093/jamiaopen/ooaa060 

Gonzales, A., Guruswamy, G., & Smith, S. R. (2023). Synthetic data in health care: A narrative 

review. PLOS Digital Health, 2(1), e0000082. 

https://doi.org/10.1371/journal.pdig.0000082 



25 
 

Goodfellow Ian, Pouget-Abadie Jean, Mirza Mehdi, Xu Bing, Warde-Farley David, Ozair Sherjil, 

Courville Aaron, and Bengio Yoshua. 2014. Generative adversarial nets. In International 

Conference on Advances in Neural Information Processing Systems. 2672–2680. 

Gordon, B., Barrett, J., Fennessy, C., Cake, C., Milward, A., Irwin, C., Jones, M., & Sebire, N. 

(2021). Development of a data utility framework to support effective health data 

curation. BMJ Health & Care Informatics, 28(1), e100303. 

https://doi.org/10.1136/bmjhci-2020-100303.  

Guo, Chenyan, Wang, Jue, Wang, Yongming, Qu, Xinyu, Shi, Zhiwen, Meng, Yan, Qiu, Junjun, 

and Hua, Keqin (2021). Novel artificial intelligence machine learning approaches to 

precisely predict survival and site-specific recurrence in cervical cancer: A multi-

institutional study. Translational Oncology, 14(5), 101032, ISSN 1936-5233, 

https://doi.org/10.1016/j.tranon.2021.101032.  

Hernandez, M., Epelde, G., Alberdi, A., Cilla, R., & Rankin, D. (2022). Synthetic data generation 

for tabular health records: A systematic review. Neurocomputing, 493, 28–45. 

https://doi.org/10.1016/j.neucom.2022.04.053 

Huston, P., Edge, V. L., & Bernier, E. (2019). Reaping the benefits of Open Data in public 

health. Releve Des Maladies Transmissibles Au Canada [Canada Communicable Disease 

Report], 45(11), 252–256. https://doi.org/10.14745/ccdr.v45i10a01 

Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L.-W. H., Feng, M., Ghassemi, M., Moody, B., 

Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care 

database. Scientific Data, 3(1), 160035. https://doi.org/10.1038/sdata.2016.35 

Kaur, Ishleen, Doja, M.N. Doja, & Ahmad, & Ahmad, Tanvir (2022). Data mining and machine 

learning in cancer survival research: An overview and future recommendations. Journal 

of Biomedical Informatics, 128(104026), ISSN 1532-0464, 

https://doi.org/10.1016/j.jbi.2022.104026. 



26 
 

Kokosi, T., De Stavola, B., Mitra, R., Frayling, L., Doherty, A., Dove, I., Sonnenberg, P., & Harron, 

K. (2022). An overview on synthetic administrative data for research. International 

Journal for Population Data Science, 7(1). https://doi.org/10.23889/ijpds.v7i1.1727 

Kokosi, T., & Harron, K. (2022). Synthetic data in medical research. BMJ Medicine, 1(1), 

e000167. https://doi.org/10.1136/bmjmed-2022-000167 

Kush, R. D., Warzel, D., Kush, M. A., Sherman, A., Navarro, E. A., Fitzmartin, R., Pétavy, F., 

Galvez, J., Becnel, L. B., Zhou, F. L., Harmon, N., Jauregui, B., Jackson, T., & Hudson, L. 

(2020). FAIR data sharing: The roles of common data elements and harmonization. 

Journal of Biomedical Informatics, 107(103421), 103421. 

https://doi.org/10.1016/j.jbi.2020.103421 

López, C. A. F., & Elbi, A. (2022, September 22). On synthetic data: a brief introduction for data 

protection law dummies. European Law Blog. 

https://europeanlawblog.eu/2022/09/22/on-synthetic-data-a-brief-introduction-for-

data-protection-law-dummies/ 

Mecredy, G., Sutherland, R., & Jones, C. (2018). First Nations data governance, privacy, and the 

importance of the OCAPÂ® principles. International Journal for Population Data 

Science, 3(4). https://doi.org/10.23889/ijpds.v3i4.911 

Muller, E., Zheng, X. and Hayes, J. Evaluation of the Synthetic Electronic Health Records. In Proceedings 

of the 1st Workshop on Scarce Data in Artificial Intelligence for Healthcare (SDAIH 2022), pages 

17-22 DOI: 10.5220/0011531300003523 

Murtaza, H., Ahmed, M., Khan, N. F., Murtaza, G., Zafar, S., & Bano, A. (2023). Synthetic data 

generation: State of the art in health care domain. Computer Science Review, 

48(100546), 100546. https://doi.org/10.1016/j.cosrev.2023.100546 

Nasa, P., Jain, R., & Juneja, D. (2021). Delphi methodology in healthcare research: How to 

decide its appropriateness. World Journal of Methodology, 11(4), 116–129. 

https://doi.org/10.5662/wjm.v11.i4.116 



27 
 

Nass, S. J., Levit, L. A., Gostin, L. O., & Institute of Medicine (US) Committee on Health Research 

and the Privacy of Health Information: The HIPAA Privacy Rule. (2009). HIPAA, the 

Privacy Rule, and its application to health research. National Academies Press. 

https://www.ncbi.nlm.nih.gov/books/NBK9573/ 

National Institute of Standards and Technology (NIST) (n.d) COSINE DISTANCE, COSINE SIMILARITY, 

ANGULAR COSINE DISTANCE, ANGULAR COSINE SIMILARITY (nist.gov) 

Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design 

considerations and applications. Information & Management, 42(1), 15–29. 

https://doi.org/10.1016/j.im.2003.11.002 

Rajotte, J.-F., Bergen, R., Buckeridge, D. L., El Emam, K., Ng, R., & Strome, E. (2022). Synthetic 

data as an enabler for machine learning applications in medicine. IScience, 25(11), 

105331. https://doi.org/10.1016/j.isci.2022.105331 

Rocher, L., Hendrick, J.M. & de Montjoye, YA. (2019). Estimating the success of re-

identifications in incomplete datasets using generative models. Nature Communications, 

10, 3069. https://doi.org/10.1038/s41467-019-10933-3.  

Sansone, S.-A., McQuilton, P., Rocca-Serra, P., Gonzalez-Beltran, A., Izzo, M., Lister, A. L., 

Thurston, M., & FAIRsharing Community. (2019). FAIRsharing as a community approach 

to standards, repositories and policies. Nature Biotechnology, 37(4), 358–367. 

https://doi.org/10.1038/s41587-019-0080-8 

Shapiro, J. (2022, May 20). Why digital privacy is so complicated. Progressive Policy Institute. 

https://www.progressivepolicy.org/publication/why-digital-privacy-is-so-complicated/ 

Synthetic data. (n.d.). Cprd.com. Retrieved December 12, 2022, from 

https://cprd.com/synthetic-data 

Synthetic healthcare database for research (SyH-DR). (n.d.). Ahrq.gov. Retrieved December 12, 

2022, from https://www.ahrq.gov/data/innovations/syh-dr.html 

Tang, R., Han, X., Jiang, X., & Hu, X. (2023). Does synthetic data generation of LLMs help clinical 

text mining? https://doi.org/10.48550/ARXIV.2303.04360 



28 
 

Tricco, A. C., Langlois, E. V., & Straus, S. E. (2017). Rapid reviews to strengthen health policy and 

systems: A Practical Guide. World Health Organization. 

Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. 

J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., 

Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA 

extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Annals of 

Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850 

Treasury Board of Canada (2023). Canada’s Cost-Benefit Analysis Guide for Regulatory 

Proposals. Retrieved June 1st 2023, from, 

https://www.canada.ca/en/government/system/laws/developing-improving-federal-

regulations/requirements-developing-managing-reviewing-regulations/guidelines-

tools/cost-benefit-analysis-guide-regulatory-proposals.html.  

Tsao SF, Sharma K, Noor H, Forster A, Chen H. Health Synthetic Data to Enable Health Learning System 

and Innovation: A Scoping Review. Stud Health Technol Inform. 2023 May 18;302:53-57. doi: 

10.3233/SHTI230063. PMID: 37203608. 

Walker, J., Lovett, R., Kukutai, T., Jones, C., & Henry, D. (2017). Indigenous health data and the 

path to healing. Lancet, 390(10107), 2022-2023. https://doi.org/10.1016/S0140-

6736(17)32755-1 

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, 

N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, 

T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. 

(2016). The FAIR Guiding Principles for scientific data management and stewardship. 

Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18 

Xu L., Skoularidou M., Cuesta-Infante A. and Veeramachaneni K.,2019, Modeling tabular data 

using Conditional GAN. In Advances in Neural Information Processing Systems, Wallach 

H., Larochelle H., Beygelzimer A., d'Alché-Buc F., Fox E., and Garnett R. (Eds.), Vol. 32. 

Curran Associates, Inc. 


