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Abstract: There is a general consensus that outlet substitution bias associated with the entry of new

merchants has nontrivial implications for measuring inflation. However, quantifying the bias empirically

has proven difficult in part because little is known about how much of the price differences in goods sold

by new versus old merchants represents a pure price difference (inflation) or differences in the quality

of the attendant services (quality differences). In the public transportation industry, measurement of

quality is complicated by the accompanying technological change rideshare services represented. As

with any completely new technology, consumers faced considerable uncertainty around the quality of

rideshare services. Consequently, consumers’ perceived quality of rideshare services changes over time,

which makes the calculation of constant-quality price indexes even more challenging. This paper explores

a new method for accounting for this bias by separately identifying changes in product price and quality

over time. I estimate multiple hedonic models to recover quality adjustment factors for quality-adjusted

unit value price indexes. One of these models utilizes measures of time-varying product quality that are

derived from a structural demand model of endogenous consumer learning that explicitly models the

diffusion of knowledge about the quality of rideshare services. I compare the measurement of quality and

pure price differences across modes of transportation, and the implications they have for constant-quality

price indexes and, consequently, the measurement of inflation.
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1. Introduction

There are many sectors for which the measurement of price change is particularly difficult due to both

quality differences across goods as well as pricing differences across merchants. Since the goods in

these industries are not identical, a unit value index is not appropriate. However, treating the goods as

strictly distinct results in pricing differences across merchants being incorrectly subsumed into quality

measures, and subsequently removed from the price index. This problem is complicated further when

there are unobservable quality characteristics that impact price, because any measure of price change

will be biased; even if price differences across merchants are non-existent.

How do these issues affect price measurement in the public transportation industry, especially in the

presence of rideshare services? First and foremost, unobserved characteristics are particularly problematic

for price measurement of any service, because their quality can be difficult to quantify with the available

variables. Consequently, there is likely a larger bias, than is the case for goods with a clearly defined set

of quality characteristics. Second, pricing strategies across merchants are not only present, but are well-

known to be time-varying, because of the practice of surge pricing by rideshare companies. In addition

to surge pricing, both taxis and rideshare services have changed their underlying pricing schedules on a

number of occasions. Thus, even if surge pricing weren’t employed, these merchants would still exhibit

time-varying price differences. Finally, the creation of rideshare services was such a revolutionary event

that consumers and the companies alike were faced with the task of learning about the quality of the

service. This learning process has led to changes in the quality of rideshare services that impact the

measurement of trip prices. Thus, in order to appropriately measure price change in this industry, the

econometrician must account for observable and unobservable characteristics that change over time.

Several papers have addressed these difficulties in price measurement in some capacity. However, none

are well suited to deal with the problems in the transportation industry mentioned in the previous

paragraph. For example, Erickson and Pakes (2011), develops a method for addressing bias due to

omitted variable bias. Their approach focuses on accounting for unobserved differences in goods that

lead them to enter or exit the market. Unfortunately, the transportation industry does not exhibit a high

degree of turnover, yet it experiences perpetual changes in quality of the extant services throughout their

lifecycle. Thus, the method in Erickson and Pakes (2011) is not applicable. Another paper that tackles

these problems, which focuses on identifying pure price differences across outlets, is Greenlees and

McClelland (2011). They estimate a hedonic model with outlet fixed effects, which makes it possible to

recover average price differences across outlets over the sample period. This method is particularly useful

in quantifying price differences across outlets for identical goods, which is their focus. However, it is not

ideal when there are unobserved characteristics that differ across outlets, because it is not clear if the
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fixed effects are picking up mode-level differences in quality or pricing strategies. As mentioned before,

the transportation industry is plagued by unobservable quality due to a lack of relevant characteristics.

Additionally, time-varying differences in pricing strategies between taxis and rideshare companies implies

that the time invariance of transportation mode fixed effects will introduce a bias by averaging these

differences over the entire sample period. Consequently, the fixed effects approach is not appropriate

for price measurement in the current setting.

Therefore, I develop an approach using a structural demand model with consumer learning to estimate

quality adjustment factors that identify unobserved quality as it evolves over time; resulting in a quality-

adjusted unit value (QAUV) price index that appropriately measures price change in the subsector of

the transportation industry comprised of taxis and rideshare companies. I evaluate this new method

by examining the NYC market for taxis and rideshare services. I find that the unobserved quality

terms estimated in the consumer learning model are important predictors of price, which translates into

quality adjustment factors that have a meaningful impact on the QAUV price indexes. In some cases,

the compound annual growth rates (CAGRs) computed from the consumer learning model were as much

as 6.5% different from quality adjustments made through standard hedonic techniques.

The paper proceeds as follows: Section 2 discusses the taxi industry, the construction of the data, and

some reduced form evidence. Then, I introduce the structural model in Section 3. The estimation

procedure and identification are covered in Section 4, results are presented in Section 5, and the paper

concludes in Section 6.

2. Industry Background and Data Description

2.1. The Taxi and Rideshare Market in NYC

New York City has the highest population density of any city in the United States at nearly 30,000 per

square mile, with Manhattan’s population density at just over 2.5 times that of the city as a whole.23

Aside from the monetary implications of car ownership in a densely populated urban area, there is simply

not enough space for all residents to own a car. This fact is reflected in New York City’s statistics,

with only 36% of surveyed residents claiming to own a car.4 As a result, the public transportation

2https://www.census.gov/quickfacts/fact/table/newyorkcitynewyork/PST045223
3https://data.census.gov/profile/Manhattan_borough,_New_York_County,_New_York?g=

060XX00US3606144919
4https://www.nyc.gov/html/dot/downloads/pdf/nycdot-citywide-mobility-survey-report-2018.pdf

https://www.census.gov/quickfacts/fact/table/newyorkcitynewyork/PST045223
https://data.census.gov/profile/Manhattan_borough,_New_York_County,_New_York?g=060XX00US3606144919
https://data.census.gov/profile/Manhattan_borough,_New_York_County,_New_York?g=060XX00US3606144919
https://www.nyc.gov/html/dot/downloads/pdf/nycdot-citywide-mobility-survey-report-2018.pdf
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Figure 1. Daily Trips

system in NYC is one of the most comprehensive in the world out of necessity. There are four main

public transportation options in the city, and they are: the subway system, the city bus network, taxi

cabs, and for-hire vehicles (FHVs). The last category is comprised of rideshare companies and other

similar services. The focus of the current paper is on the competition between taxi cab and rideshare

companies.

2.1.1. Rise of the Rideshare Company

Uber entered the NYC market in May 2011, and Lyft followed three years later in July 2014. The impact

of entry by rideshare companies was felt by all incumbent public transportation options, but the effect

on their closest substitute, taxis, was the most drastic. The average number of daily trips for yellow

cab taxis fell from 463,701 in November 2010 to 336,737 in November 2016, while the average number

of daily trips for Lyft and Uber in November 2016 had reached 269,536. The implication here is that

Lyft and Uber did not just reach a new group of consumers, but also attracted riders that would have

otherwise chosen to take a taxi. Figure 1 shows the average daily trips by month for taxis and rideshare

services from 2015 to 2017.5 The taxi counts include trips for both yellow and green taxis, while the

rideshare counts are comprised of Lyft and Uber trips. Although both Lyft and Uber entered the NYC

market prior to 2015, the NYC TLC does not have publicly available data for rideshare services prior to

2015.

5The data are compiled by the author from NYC OpenData and TLC monthly trip records.
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2.2. Data and Descriptive Statistics

This section describes the data used in estimation and provides descriptive and reduced-form evidence.

2.2.1. Data

The raw data are compiled from two sources by Aizcorbe and Chen (2022). One is the NYC Taxi and

Limousine Commission (TLC), which has publicly available, trip-level data for yellow and green taxis.

The data include pickup and dropoff times and locations as well as detailed fare information including

base fares, taxes, tolls, tips, and more. While the TLC also publishes trip-level data for all FHVs, price

information is not included. The TLC data is supplemented by a sample of rideshare consumer email

receipts obtained from Rakuten Intelligence.6 The TLC data categorize pickup and dropoff locations

by NYC taxi zones, while the Rakuten data use nine digit zip codes. In order to match the data,

geo-processing techniques are used to map zip codes to taxi zones.7 After matching the data, the

observational unit is a trip within a 15 minute period for each mode at the route-level, where a route

is defined as a directional NYC taxi zone pair. This is the dataset used in Aizcorbe and Chen (2022),

which I further augment by restricting the service types to taxis, yellow and green cab combined, basic

Lyft rides, and UberX rides. I ignore specialty rideshare options, such as, Lyft Line, Uber Pool and Uber

Black. Aside from these services being clearly different from standard taxi cabs, they have different

pricing schedules and much fewer observations than the basic Lyft and Uber services. I also exclude

specialty FHV services like central dispatch facilities, livery, and limousine companies.8 The data are

grouped into seven time blocks that are a combination of those defined in Cohen et al. (2016) and Lam

and Liu (2017). Trips are separated due to differences, such as, surge frequency, distance, and duration,

which are indicative of these being fundamentally distinct markets with different consumer behavior.9

These time blocks are listed in Table 1. Within each time block, I aggregate up to the mode-week level

across all routes. Finally, I focus on the time period from the beginning of 2015 to September 2016.10

The final sample contains 1,785 mode-week-level observations.

6Rakuten Intelligence was acquired by NielsenIQ in September 2021.
7See Aizcorbe and Chen (2022) for more information about the processing of the data.
8See https://www.nyc.gov/site/tlc/businesses/for-hire-vehicles.page for a brief description of the different

FHV categories.
9Trip characteristics by time block can be found in Table 7 in Section B of the appendix.

10In September 2016, Uber faced price gouging accusations after surge pricing went into effect in the aftermath of the
2016 New York and New Jersey bombings. In response to these accusations, Uber changed their surge pricing algorithm.

https://www.nyc.gov/site/tlc/businesses/for-hire-vehicles.page
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Time Block Day of Week Time of Day

Morning Rush Monday-Friday 5:00am to 9:00am

Weekday Day Monday-Friday 9:00am to 5:00pm

Evening Rush Monday-Friday 5:00pm to 7:00pm

Weekday Evening Monday-Friday 7:00pm to 11:00pm

Weekend Day Saturday-Sunday 6:00am to 5:00pm

Weekend Evening Saturday-Sunday 5:00pm to 11:00pm

Bar Hours
Thursday-Saturday 11:00pm to 11:59pm

Friday-Sunday 12:00am to 3:00am

Table 1. Time Blocks

As mentioned earlier, the daily average trips and market share for Lyft and Uber are increasing from

2015 to 2017. The implication being that substantial learning about rideshare services is still taking

place, and the quality of these modes of transportation are still evolving. However, it is not guaranteed

that the pattern in the aggregate data across all NYC boroughs, shown in Figure 1, will also prevail

within each time block for trips within Manhattan. The pattern of increasing market shares over time

within each time block is illustrated in Figure 2, which shows the share of weekly trips for Lyft and Uber

relative to the share of taxi trips for each time block. In each individual graph, the relative shares for

both rideshare services are increasing over time on average. Thus, the aggregate trend seen in Figure 1 is

also present within each time block for each rideshare company. Of course, the growth of market shares

on its own does not guarantee that a price index will be biased. The larger implication of increasing

shares is that either consumers are still learning about rideshare companies, rideshare companies are

reducing prices to attract consumers, or both. Each case presents obstacles to price measurement that

were mentioned in Section 1. Thus, increasing shares within time blocks highlights the importance

of obtaining time-varying mode quality measures that are separate from mode-level pricing strategy

differences.

2.2.2. Descriptive Statistics

In Table 2, I show summary statistics for trip characteristics by mode. The distance and duration of

a trip are the two most important price characteristics, as trip prices are largely based on nonlinear

pricing schedules consisting of a base fee plus the distance and duration. Table 2 shows that trips using

rideshare companies are typically longer than taxi trips, in both distance and duration. However, Lyft is
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Mode Mean Std. Error Min Max Median

Adjusted Multiplier Lyft 1.232 0.245 1.000 2.513 1.152
Taxi 1.000 0.000 1.000 1.000 1.000
UberX 1.197 0.180 1.000 2.216 1.151

Distance Lyft 2.300 0.655 0.810 7.959 2.241
Taxi 1.408 0.084 1.254 1.578 1.399
UberX 1.896 0.164 1.520 2.985 1.874

Duration (Minutes) Lyft 16.153 4.264 6.686 49.885 15.634
Taxi 9.644 1.454 7.310 14.388 9.218
UberX 13.910 2.250 9.768 21.877 13.456

Inside Share Lyft 0.003 0.004 6.88e-6 0.020 0.002
Taxi 0.911 0.028 0.820 0.973 0.913
UberX 0.086 0.025 0.027 0.166 0.084

Price Lyft 14.306 3.776 6.063 40.220 13.696
Taxi 10.148 0.663 8.752 12.029 10.008
UberX 13.335 2.572 8.768 27.292 12.825

Surge Share Lyft 0.031 0.079 0.000 1.000 0.010
Taxi 0.001 0.001 1.99e-6 0.004 0.001
UberX 0.002 0.002 0.000 0.007 0.002

Table 2. Summary Statistics by Mode

the clear outlier in terms of distance and duration. These differences are not inherently quality related,

and as such, must be accounted for when computing price indexes. The removal of these differences

alone produces heterogeneity-adjusted price estimates (see Silver, 2009). The adjusted multiplier for

each rideshare option is the average multiplier applied to a trip during the time block in a given week. Of

course, this variable is always one for taxis as they do not engage in surge pricing. The same is not true

for the surge share variable, because it is the share of trips on a particular mode that occurred during

a 30 minute window that was flagged as having surge pricing.11 In other words, it captures how often

a mode operates within a market that is experiencing high demand. Finally, the inside share variable is

the quantity share of each mode within the market for rides. In other words, it is the inside share used

in the discrete choice demand model that is discussed in Section 3.

11The number of trips is used in estimation, but the share is presented to give a clearer picture of the number of trips
in relation to total trips on each mode.
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2.3. Reduced Form Evidence

In this section, I estimate the baseline hedonic model which contains the distance, duration, number of

surge trips, and the adjusted multiplier in addition to the time dummies. The trip characteristics are

the first three variables mentioned, while the adjusted multiplier is used as a proxy for a function of

observable differences in pricing strategies across modes. I use this specification to examine the residuals

to determine if there is any pattern that could cause the price index to be biased. In particular, if they

are correlated with time, it would indicate that there are unobserved characteristics that could influence

any price index computed using the regression estimates. Since I am focusing on the residuals, the

parameter estimates from the hedonic model are presented in Section 5 alongside the results from the

structural model to facilitate a comparison.

In Figure 3, the residuals from the seven separate time block regressions are plotted against time. There

are two main points of interest. First, the residuals appear to be correlated with time for every mode

across all time blocks. Thus, there are likely unobserved characteristics that impact the prices of each

mode, and consequently, the associated price index. Second, within each time block, the relationship

between the residuals and time for each mode appears to be different. This feature is particularly

important, because it points to a differential impact of the unobserved characteristics on the prices of

each mode over time. Thus, for any approach to be successful in producing a price index free of bias,

it must separately identify changes in quality from differences in pricing over time and across modes.

As previously stated, the method proposed in this paper is designed to address the issue of unobserved

characteristics, and is discussed in Sections 3 and 4.

3. Consumer Learning Discrete Choice Model

In this section, I present the structural demand model with consumer learning that is estimated in order

to compute the time-varying quality adjustment measures used to separate unobserved quality changes

from pure price differences. First, I introduce the Bayesian updating process that models how consumers

learn about the quality of each transportation mode. Then, I discuss the interpretation of perceived

quality and Bayesian updating in the context of price index quality adjustments. Finally, I turn to the

expected utility of consumers, the discrete choice demand model, and the associated choice probabilities.

Consumers are myopic in that each period, they maximize their current utility based upon their infor-

mation set, but they are not forward looking. This implies a static discrete choice demand framework
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that is augmented by consumers’ ability to make inferences based on past information. I opt for this

approach rather than allowing consumers to be forward-looking for two reasons. First, forward-looking

utility maximization is not likely to be common in this subsector of the transportation industry. Sec-

ond, the dynamic optimization problem with aggregated consumer learning is computationally intensive

to the point of near infeasibility.12 Furthermore, since I do not have the individual-level purchasing

histories used in many studies (e.g. Erdem and Keane, 1996; Roberts and Urban, 1988), I use the mod-

eling approach in Ching (2010b). Rather than expected utility being determined by consumer-specific

perception of quality, individual choices are made based on the public perception of a given mode of

transportation. However, the mode-level perceived quality is computed by aggregating the signals each

consumer receives from their own experience each time they take a trip. This approach implies that

an information aggregator takes the consumer-specific experience signals each period, and updates the

public perception of quality using a Bayesian mechanism. In Ching (2010b), patients are the consumers,

and physicians assume the role of information aggregator. In each period some fraction of patients report

their experiences to their physician who, in turn, updates public perception based on the experiences

of their patients. In the context of the market for rides, social media platforms can be viewed as the

information aggregators. Each period, some fraction of riders communicate their experiences through

social media, from which riders obtain the updated public perception of transportation mode quality. Of

course, the updating process through social media is extremely complicated and could also be modelled.

However, the additional complexity is unlikely to significantly affect the core results of the paper, and

the requisite data are either unavailable or difficult to obtain.

3.1. Consumer Learning

Each trip consumers take, whether it is by taxi or rideshare service, is an experience good. That is to

say, each consumer i experiences a ride quality of λEijt for a trip using mode j in week t. This observed

quality is not necessarily the same as the true mean quality of mode j, which is λj . The difference in

ride quality across consumers could be due to a variety of factors; for example, different drivers, wait

times, or rider idiosyncrasies.

In the model, consumers receive an experience signal that informs them about the quality of their chosen

mode of transportation. The experience signal is:

λEijt = λj + εEijt, εEijt ∼ N(0, σ2E) (1)

12This modeling decision is common in the literature on discrete choice demand with consumer learning. Very few papers
estimate models with either consumers or producers solving dynamic optimization problems (see Ching, 2010a; Osborne,
2011), and this author does not know of any example where both consumers and producers are forward-looking.
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where εEijt is the rider-mode-week specific signal noise that is normally distributed with mean zero and

variance σ2E . Since this is an experience signal, the information a rider obtains in period t does not affect

their decision in that period. Instead, it impacts their perception of quality for the following period.

Since taxis have been operating in NYC for over a century, I assume that the true quality of present day

taxi rides is known to consumers. Consequently, the prior over quality for taxis is equal to the perceived

quality, which is equal to the true quality throughout the entire sample. There is no uncertainty about

taxi quality, which implies no updating of the expected quality each period. The mode-level experience

signal is the mean of all signals received by consumers that took a trip using a given mode. This signal

is given by:

λ
E
jt =

1

κqjt

κqjt∑
i=1

λEijt ∼ N

(
λj ,

σ2E
κqjt

)
(2)

where qjt is the number of trips using mode j at time t, and κ represents the fraction of the experience

signals that are revealed to all riders. In the example where social media platforms act as information

aggregators, this fraction can be thought of as a measure of social network closeness, how many

experience signals are shared among consumers, or simply the fraction of riders that use social media

platforms.

Under Bayesian updating, the consumer priors for the mean and variance of ride quality must be specified.

I choose a normal prior, which is given by:13

λj ∼ N(λj0, σ
2
j0) (3)

The implication for the model is that in the first period, before receiving an experience signal, consumers

believe that the true quality of mode j follows the distribution in (3). Through information aggregation

and Bayesian updating, after a single period, the perceived mean and variance of quality in the second

period are:

λj2 =
σ2j1

σ2j1κqj1 + σ2E
κqj1λ

E
j1 +

σ2E
σ2j1κqj1 + σ2E

λj0 and σ2j2 =
1

1
σ2
j1

+
κqj1
σ2
E

(4)

Since experience signals do not impact choices in the same period they are received, the Bayesian

posterior mean and variance are delayed by a single period.14 The expression in (4) can be generalized

to multiple periods, and rewritten in terms of the prior variance, which gives the following posterior

13A normal prior is common assumption in consumer learning literature, because the posterior distribution is also normal.
14If the reader wishes to check that the first period posterior is equivalent to the prior, then the single period lags can

be substituted into (4) to verify.
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mean and variance of perceived quality:

λjt =
σ2j0

σ2j0κQjt + σ2E

t−1∑
τ=1

κqjτλ
E
jτ +

σ2E
σ2j0κQjt + σ2E

λj0 (5)

σ2jt =
1

1
σ2
j0

+
κQjt

σ2
E

where Qjt =
∑t−1

τ=1 qjτ is the total number of trips up to period t for mode j. Also note that this

formulation is for periods t = 2, . . . , T , and for t = 1, we simply have the prior distribution.

Before introducing the consumer demand model, it is important to frame the Bayesian updating mech-

anism in the context of price indexes and quality adjustments. From the description of the mechanism

above, one may think that the measure to be used in the quality adjustment factor is the true mode

quality, λj . However, both rideshare services experienced substantial quality increases during the sample

period due to continual improvements in various areas, such as, their GPS accuracy and size of their

driver pool. Therefore, it is more accurate to view the fixed value of λj as the quality toward which

mode j converges over the course of the sample period. Thus, the prior for quality, λj0, can be viewed

as the quality of mode j in the initial period, while λjT represents quality in the final period. The

Bayesian updating mechanism computes the path of perceived quality between the initial and terminal

periods using prices and market shares without restricting the path to a particular shape. Consequently,

the path of perceived quality provides a flexible estimate for the change in mode quality. I discuss the

variation used to identify perceived quality in more detail in Section 4.2.

3.2. Consumer Demand

I follow Ching (2010b) in modeling consumer utility. Each period, a consumer i chooses a mode of

transportation, j, that maximizes their current period expected utility, E [Uijt|It], where It is the

information set common to all consumers that is available at time t. The indirect utility from a good j

is given by:

Uijt = ωλEijt − ωr
(
λEijt
)2

+ αipjt +Xjtβ + ξjt + εijt (6)

where λEijt is the individual experience signal, ω is the individual’s value of the experience signal, and

r is the risk coefficient. The price of a trip is pjt, Xjt is a set of trip characteristics, and α and β

are their respective coefficients. The mode-week-level demand shock unobserved by the econometrician

is ξjt ∼ N(0, σ2ξ ), where the variance is a parameter to estimate. The idiosyncratic error term, εijt,
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follows a Type-I Extreme Value distribution with variance πµ2

6 . As discussed in Nevo (1993), the demand

shocks could be unobserved product quality characteristics or taste changes. In a demand model with

consumer learning, the perceived quality term captures the unobserved product quality characteristics

as they change over time, so that ξjt can be interpreted as taste changes. Since these taste changes

influence demand directly, they cannot be viewed as pure price differences even though they are not

inherently related to trip characteristics. Furthermore, they are modeled as transitory shocks, their

impact on price changes over time should be negligible.

Consumers are assumed to have CARA preferences over the uncertain portion of their utility (i.e. the

quality signals), and linear preferences over the sub-utility that they observe with certainty.15 Thus, the

utility consumer i expects when choosing mode j at time t is:

E [Uijt|It] = ωE
[
λEijt|It

]
− ωrE

[
λEijt|It

]2 − ωrE
[(
λEijt − E

[
λEijt|It

])2|It]
+ αipjt +Xjtβ + ξjt + εijt (7)

The first line of (7) is the stochastic portion of the consumer’s expected utility, while the second line

is the deterministic portion. Note that the error terms, ξjt and εijt, are deterministic for the consumer,

but not the econometrician. Consequently, they enter the linear portion of the consumer’s expected

utility function. The third term in (7) can be simplified further to ωr
(
σ2E + σ2jt

)
. Since the signal is

equal to the true quality in expectation, we can replace it in the utility function. This gives the following

expected utility:

E [Uijt|It] = ωE [λj |It]− ωrE [λj |It]2 − ωr
(
σ2E + σ2jt

)
+ αipjt +Xjtβ + ξjt + εijt = V ∗

jt + εijt (8)

Finally, the expected utility for the outside option is allowed to change over time to capture potential

quality improvements, but consumers do not receive explicit quality signals. The expected utility is given

by:

E [Ui0t|It] = ϕ0 + ϕtt+ εi0t = V ∗
0t + εi0t (9)

where j = 0 indicates the choice of the outside option, and t is the time trend used to capture quality

changes over time as well as other changes that affect utility. In the context of the taxi and rideshare

market in NYC, the outside option can be viewed as the subway or public bus system.

Since the idiosyncratic taste parameter is distributed Type-I Extreme Value the familiar functional form

15Under CARA preferences, ω > 0 permits the familiar interpretation of r, where r > 0, r < 0, or r = 0 imply riders are
risk-averse, risk-seeking, or risk-neutral, respectively.
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for quantity shares obtains. The shares for mode j at time t is given by the following:

sqjt = Pr(j|p, ...) =
exp{V ∗

jt}
exp{V ∗

0t}+
∑

k exp{V ∗
kt}

(10)

where sqjt is used to denote quantity shares in order to differentiate between quantity and expenditure

shares.

4. Identification and Estimation

In this section, I discuss the estimation and identification of the structural model, and the procedure

followed to estimate the hedonic price equation used to compute the consumer learning price index.

4.1. Estimation

The estimation of the consumer learning price index follows a two-step procedure. In the first step, the

structural demand model is estimated in order to recover the structural terms that represent unobserved

quality. The second step estimates the baseline hedonic price equation with an additional function of

these structural parameters, which is denoted gjt for a given mode and week. This process is done

separately for each of the seven time blocks.

4.1.1. Structural Demand Model

The standard issue with estimating demand models is the endogeneity of price. Given that the mode-level

unobservables, E [λj |It] and ξjt, are likely correlated with prices, failing to account for this correlation

will result in biased parameter estimates. The endogeneity issue is not a new one, with many techniques

developed to deal with the problem appropriately; most notably Berry et al. (1995). However, due to

consumer learning, the aggregate mode-level unobservables are serially correlated and non-stationary.

Consequently, it is both computationally infeasible and not necessarily possible to estimate the model via

GMM. Therefore, I follow the method used in Ching (2010b), which uses simulated maximum likelihood

to estimate the joint distribution of prices and quantities. Due to computational limitations, estimating

a full supply-side oligopoly model with forward-looking firms is eschewed in favor of a simple, hedonic
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pricing equation given by the following:

ln pjt = ln
(
hj
(
t,Zjt, E [λj |It] , σ2jt, ξjt;θp

))
+ νjt, νjt ∼ N(0, σ2ν) (11)

where θp is the set of pricing equation parameters, and νjt is the prediction error. It is important to

distinguish between the pricing policy function in (11) and the second step hedonic price equation in (16).

As discussed above, the purpose of the pricing policy function is for identification of the price coefficient

on the demand side of the structural model. Although one could use the estimates from the pricing

policy function to compute the hedonic price index, there is one major drawback to this approach. The

time dummies from the standard hedonic model must be incorporated into the pricing policy function.

When the time window of the sample is relatively large, these extra parameters drastically increase the

computational burden of the model. This issue becomes particularly pronounced when the prediction

error, νjt, is very small and causes optimization issues. Thus, I include a time trend in the pricing policy

function, and introduce the time dummies in the second step of the estimation procedure.

The demand-sided equation computes quantity demanded, qjt, using the total market size Mt and

the shares from (10). The quantity demanded follows a multinomial distribution with sampling errors,

ηjt. The large sample size for each market permits the assumption that the multinomial distribution

approximates the multivariate normal. The estimating equation is given by the following:

qjt =Mts
q
jt

(
pjt,Xjt, E [λj |It] , σ2jt, ξjt;θq

)
+ ηjt (12)

where θq is the set of demand equation parameters. The sampling errors from the demand equation are

distributed ηt ∼ N (0,Σηt), where the variance-covariance matrix of the sampling errors is:

Σηt =Mt


sq1t(1− sq1t) −sq1ts

q
2t −sq1ts

q
3t

−sq2ts
q
1t sq2t(1− sq2t) −sq2ts

q
3t

−sq3ts
q
1t −sq3ts

q
2t sq3t(1− sq3t)

 (13)

The joint likelihood of observing a pair of quantity-price vectors (qt,pt) is given by the product of the

conditional likelihoods:

ℓ (qt,pt|χt, E [λj |It] , ξt;θ) = fq (qt|pt,χt, E [λj |It] , ξt;θq) fp (pt|χt, E [λj |It] , ξt;θp) (14)

where χt contains all observable covariates except for prices. It is important to note that although the

variance of perceived quality updates every period, it is entirely determined by observed covariates and

estimated coefficients. One can check (5) to see that it is not a function of the experience signal noise

εEijt. Thus, when the sampling errors are very small, as noted in Ching (2010b), the unobservables that

explain most of the difference between the model and the data are E [λj |It] and ξjt. The likelihood
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function for a given time block is:

L (θ) =
T∏
t=1

ℓ (qt,pt|χt, E [λj |It] , ξt;θ) (15)

which is the likelihood of jointly observing the sequence of price and quantity vectors from time 1 to

time T . The Bayesian learning process causes the perceived quality term to be autocorrelated, which

makes integrating out the unobservables computationally intractable. Thus, the model is estimated by

simulated maximum likelihood where SE simulated draws of the signal noise, εE , and Sξ draws of the

demand shock, ξ, are used to compute the likelihood function in (15). I discuss the simulation procedure

in more detail in Appendix C.

4.1.2. Consumer Learning Hedonic Price Model

Once the estimates from the structural demand model are obtained, the time-varying unobserved quality

function, gjt, can be formulated. The hedonic price model used to compute the consumer learning price

index is given below:

ln pjt = δ0 + δt + Zjtβ + γ1 ̂E [λj |It] + γ2σ̂
2
jt + γ3

(
ξ̂jt − ξ̂taxist

)
︸ ︷︷ ︸

gjt

(16)

+φ (Adjusted Multiplierjt)︸ ︷︷ ︸
fjt

+ejt, ejt ∼ N(0, σ2e)

The sum of the perceived quality and variance estimates and the unobserved demand shocks from the

structural demand model are included as the unobserved quality function gjt. Each of these terms

is computed by averaging over the simulated error draws, which is discussed in detail in Appendix

C. I proxy for the pure price difference function, denoted fjt, using the adjusted surge multiplier,

Adjusted Multiplierjt. Since this term captures changes in pricing by Lyft and Uber during surge

periods, it is a clear difference in pricing strategies between the rideshare companies and taxis. Further-

more, the surge pricing strategies of Lyft and Uber are not identical, so pure pricing differences between

the two rideshare companies are also captured.
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4.2. Identification

Now that I have introduced the econometric model and estimation procedure, I will discuss identification.

I ignore the coefficients familiar from standard discrete choice demand models, and instead focus on the

learning parameters.

First, the true quality mean for one ride service must be fixed, so I choose to set the true quality mean

for taxis equal to zero. Since the true mean for taxis is known at the start of the sample period, this

means the prior mean for taxis is also zero as well as the perceived mean and variance. Variation in the

time series of the cumulative number of trips and the simulated learning errors, along with the function

form of the uncertain portion of the expected utility function can be used to identify the priors and

posterior quality means and signal variances, as well as ω and the risk coefficient r. This can be checked

by plugging the cumulative number of trips and simulated errors into the stochastic sub-utility. One can

also refer to Ching (2010b) for an in-depth discussion of the identification of the learning parameters.

From the expression for perceived quality variance in (5), it can be determined that the rate at which

public perception of ride service quality converges to the true mean is governed by the ratio, κ
σ2
E
. Thus,

for at least one of the two rideshare companies, either κ or σ2E must be fixed. I choose to fix κ for

Uber, and also assume that σ2E is the same across companies. Finally, the standard deviation for the

product-week demand shock, ξjt, can be identified, because the perceived quality variance tends to zero

in the long run.

Aside from being able to identify the parameters from variation in the data, it is also important to

understand how the identified learning parameters constitute unobserved quality rather than pure price

changes. In the demand model, the learning parameters capture unobserved differences in market shares

conditional on the observed price in the same period. Thus, they influence demand directly rather than

indirectly through their impact on price. For example, consider a case in which a consumer is faced

with a choice between modes that are identical from the point of view of the econometrician (i.e. same

characteristics and prices). The observed choice is determined by differences in the unobservable factors

that are captured by the learning parameters and the mode-week-level demand shocks. Since pure

price differences are reflected in the observed price, the learning parameters are picking up variation

in unobservable quality characteristics that are exogenous to price, such as, driver quality and waiting

time, that influence the decision made by the consumer. Therefore, these terms should be treated as

quality characteristics in the second stage hedonic regression, and included in the quality adjustment

factor used to compute quality-adjusted prices.
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5. Results

In this section, I present the parameter estimates from the reduced form and structural models. Next, I

discuss the estimated learning parameters and the rates of diffusion in more detail. Then, I examine the

different methods for controlling for unobserved quality by comparing the quality-adjusted unit value

price indexes.

5.1. Parameter Estimates

The model is estimated separately for each time block for both the structural demand and reduced form

hedonic models. First, I present a subset of the demand estimates for each time block. Then, I show a

subset of the hedonic pricing equation estimates for the baseline and mode fixed effects reduced form

specifications, as well as the second stage of the consumer learning model.

The estimates from the structural demand model are presented in Table 3. The price coefficients

are relatively small across all time blocks, with some being positive, and others not being statistically

significant. These results point to the price of a trip not being the main driving force behind consumers’

choice of transportation mode. The more interesting results for the focus of the paper are the mode

quality estimates for both the prior and true quality, and the variation in coefficients across time blocks.

The differences across time blocks offers support for the decision to treat each period as a distinct

market with different consumers and different purchasing patterns. For example, the large variances

for both the demand shocks and experience signals during bar hours should not be surprising, because

these are periods of high, intense demand with consumers that are least likely to make optimal utility

maximizing decisions. The Weekday Evening period exhibits the other extreme, with very small demand

shock and experience signal variances that are ultimately not statistically significant.

The negative values for the mode quality priors and true means indicate that after controlling for price

and mode characteristics the discrepancy in market shares for the rideshare companies relative to taxis

implies large negative values. These negative values are indicative of both the nascency of the rideshare

companies during the sample, as well as their viability in Manhattan. It is important to note that these

results are specific to the Manhattan market for rides, and should not be applied more generally. Despite

the negative values, in every time block, the quality for both rideshare companies increases over the
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Bar Hours Evening Rush Morning Rush Weekday Day Weekday Evening Weekend Day Weekend Evening

Price (α) -0.029 0.005 -0.043 -0.093 -0.008 -0.005 0.034
(0.025) (0.002)* (0.003)** (0.002)** (0.006) (0.007) (0.008)**

Experience Signal 275.180 3.222 4.145 0.017 4.3e-4 0.041 2.219
Variance (σ2E) (42.316)** (0.444)** (0.523)** (0.005)** (7.09e-4) (0.021)* (0.485)**

Variance of Mode 3.233 0.027 0.055 0.118 0.049 0.040 0.081
Demand Shocks (σ2ξ ) (0.168)** (0.001)** (0.003)** (0.004)** (0.038) (0.003)** (0.006)**

Fraction of Signals Revealed (κ)
Lyft 0.001 0.010 0.759 3.86e-6 1.57e-8 1.4e-4 0.002

(6.53e-4)* (0.003)** (2.453) (7.88e-7)** (2.71e-8) (4.4e-5)** (0.001)**
Uber 1e-4 1e-4 1e-4 1e-8 1e-4 1e-6 1e-4

— — — — — — —

Mode Quality Mean Prior (λj0)
Lyft -161.135 -12.244 -13.171 -33.047 -22.163 -15.839 -8.290

(4.969)** (0.373)** (0.618)** (0.499)** (6.469)** (2.625)** (0.606)**

Uber -81.631 -5.451 -6.054 -17.120 -12.878 -8.725 -4.461
(2.256)** (0.142)** (0.245)** (0.182)** (3.752)** (1.433)** (0.316)**

Mode Quality True Mean (λj)
Lyft -108.789 -8.061 -8.477 -22.918 -13.820 -11.384 -6.052

(2.916)** (0.213)** (0.354)** (0.273)** (4.093)** (1.873)** (0.433)**

Uber -74.917 -4.705 -4.922 -16.254 -9.563 -6.681 -3.585
(1.826)** (0.114)** (0.189)** (0.212)** (2.799)** (1.109)** (0.268)**

Mode Quality Prior Variance (σ2j0)

Lyft 194.263 0.322 0.008 1.471 6.372 0.438 1.022
(77.408)* (0.088)** (0.024) (0.306)** (3.607) (0.203)* (0.347)**

Uber 68.553 0.393 0.479 1.490 7.54e-6 0.107 0.066
(13.697)** (0.059)** (0.101)** (0.187)** (1.23e-5) (0.047)* (0.023)**

LLH -1756 -1775 -1925 -1955 -1808 -1780 -1713

Table 3. Demand Estimates

Standard errors in parentheses. * p < .05, ** p < .01 Notes: (i) All estimates and
standard errors smaller than .001 are abbreviated using scientific notation. (ii) Results are
for simulation using SE = Sξ = 50.
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course of the sample. As previously mentioned, the change in quality is more important than the levels

when using the estimates to compute the price index.

The next set of results, presented in Table 4, are those from the various hedonic specifications: (i)

the baseline model, (ii) the mode fixed effects model, and (iii) the consumer learning model. The

quality-adjustment factors used to compute the QAUV price indexes are derived from these results.16

The baseline hedonic model refers to the specification estimated in Section 2.3, the mode fixed effects

hedonic model estimates the same specification with the addition of mode dummies for Lyft and Uber,

and the consumer learning hedonic model contains the results from estimating (16). Each regression is

weighted by expenditure shares, and estimated separately for each time block. Recall that the adjusted

multiplier is the proxy for the pure price function included in the price index in addition to the time

dummies. The coefficients for this variable is relatively consistent across models and time blocks, except

for the Morning Rush and Weekday Day time blocks. In both these time blocks, the coefficient is much

smaller in the consumer learning model than the other two models. The implication is that there is some

unobserved variation in prices over time that is correlated with the adjusted multiplier for which the first

two models do not control. This omitted variable bias is an example of the indirect effect unobserved

quality can have on the price index when it is not addressed. The mode fixed effects have mixed results,

with some time blocks exhibiting statistically significant estimates while others do not. Interestingly,

most of the perceived quality and variance coefficients are statistically significant and have the same

sign, while the unobserved demand shock is not significant in any of the time blocks. Finally, the

adjusted R2 provides a metric by which to measure the ability of the structural model terms to capture

unobserved variation that is correlated with log prices. As expected, the adjusted R2 in the fixed effects

model is larger than in the baseline specification. It is also larger for the consumer learning model than

the fixed effects model in all but the Weekday Evening time block, which exhibited estimates that were

not statistically significant in both the structural demand and hedonic models. Thus, the results indicate

that the perceived quality parameters capture unobserved variation that is likely to impact the QAUV

price index.

5.2. Consumer Learning and Diffusion

The change in consumers’ perception of rideshare service quality is essential to determining the degree

of bias in the various QAUV price indexes computed in this paper. As discussed in Section 1, a

16see Section A in the appendix for a complete discussion on the construction of the quality adjustment factors and the
QAUV price indexes
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Bar Hours Evening Rush Morning Rush Weekday Day Weekday Evening Weekend Day Weekend Evening

Baseline Hedonic Model

Adjusted Multiplier 0.799 0.794 0.760 1.083 0.907 0.723 0.843
(0.059)** (0.044)** (0.053)** (0.129)** (0.102)** (0.050)** (0.069)**

Adjusted R2 0.854 0.937 0.956 0.904 0.779 0.914 0.871

Mode Fixed Effects Hedonic Model
Mode Fixed Effects (γj)
Lyft 0.019 -0.129 -0.243 -0.503 -0.223 -0.072 -0.122

(0.057) (0.054)* (0.088)** (0.080)** (0.078)** (0.057) (0.063)
Uber -0.035 -0.049 -0.028 -0.153 -0.088 -0.011 -0.084

(0.029) (0.027) (0.047) (0.045)** (0.045) (0.027) (0.032)**
Adjusted Multiplier 0.785 0.773 0.733 1.027 0.876 0.725 0.815

(0.058)** (0.045)** (0.053)** (0.126)** (0.102)** (0.050)** (0.068)**
Adjusted R2 0.859 0.938 0.960 0.927 0.789 0.914 0.875

Consumer Learning Model

Perceived Quality (E [λj |It]) 0.002 0.025 0.026 0.015 -0.007 0.015 0.012
(3.55e-4)** (0.005)** (0.008)** (0.002)** (0.004) (0.003)** (0.008)

Perceived Quality Variance (σ2jt) 0.003 0.650 0.661 0.221 -0.024 2.367 0.712

(4.18e-4)** (0.063)** (0.067)** (0.014)** (0.020) (0.245)** (0.196)**
Unobserved Demand Shock (ξjt − ξtaxist ) 0.001 -2.52e-4 0.005 0.004 -0.516 -0.047 0.016

(0.002) (0.012) (0.014) (0.161) (1.724) (0.123) (0.023)
Adjusted Multiplier 0.741 0.717 0.524 0.767 0.946 0.738 0.813

(0.052)** (0.036)** (0.050)** (0.090)** (0.103)** (0.041)** (0.068)**
Adjusted R2 0.892 0.961 0.972 0.963 0.782 0.945 0.879

Table 4. Hedonic Price Equation Estimates

Standard errors in parentheses. * p < .05, ** p < .01 Notes: (i) All estimates and standard
errors smaller than .001 are abbreviated using scientific notation.

model with mode fixed effects offers no indication for whether the fixed effect is picking up variation

in unobservable quality, pure price differences, or both. As we will see in Section 5.3, how these fixed

effects are categorized substantially changes the resulting price index.

The estimated perceived quality for Lyft and Uber is plotted separately for each time block in Figure

4. In all cases, for both rideshare services, the perceived quality is increasing over the course of the

sample period. The differences in magnitudes and rates of increase across time blocks and rideshare

services indicates that not only are Lyft and Uber distinct in the eyes of consumers, but also that the

time blocks represent different markets, each with their own idiosyncrasies. The differences in slopes are

particularly important, since the change in perceived quality with respect to time has a direct impact

on the price index. Additionally, perceived quality is concave with respect to time towards the end of

the sample period, but not throughout the entire sample. This illustrates both the flexibility of the

Bayesian updating mechanism in capturing quality improvements, as well as the diminishing marginal

improvements that can be made to a product over a longer time frame. The flexibility is most evident in

time blocks like the Weekday Day period, where Lyft experiences large quality increases in the middle of

the sample, while the quality improvements for Uber are relatively non-smooth in comparison to other

time blocks. These features illustrate that the learning mechanism does not place major restrictions

on the shape of the perceived quality path, which reduces the likelihood that the consumer learning

modeling assumptions will introduce bias into the quality-adjustment estimates.
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Time Block Lyft Quality CAGR Uber Quality CAGR

Bar Hours 18.15 4.23
Evening Rush 18.74 7.65
Morning Rush 19.71 10.26
Weekday Day 16.68 2.35
Weekday Evening 20.05 10.43
Weekend Day 15.84 9.37
Weekend Evening 15.49 8.37

Table 5. CAGR in Perceived Quality

Notes: All values are percent.

The perceived signal variance for Lyft and Uber is plotted separately for each time block in Figure 5. As

mentioned previously, there has been substantial learning over the course of the sample period, which is

evidenced by the fact that the signal variance becomes very close to zero for most time blocks. This can

be interpreted as another dimension along which quality improves, because it represents an improvement

in the consistency with which a level of quality is provided across drivers within a rideshare company.

Although the actual values of the perceived quality estimates carry very little meaning, the change in

these values over time greatly impacts the price index through the second stage hedonic regressions. The

CAGR for perceived quality for each rideshare company is presented in Table 5. The most noticeable

feature of the growth rates is that quality increase much more for Lyft than Uber. The main reason is

that Lyft entered most markets later than Uber, not just the NYC market, which leads to it experiencing

faster quality improvements typically seen earlier in the life of a good or service.

5.3. Price Indexes

In this section, I compare the quality-adjusted unit value price indexes computed from the hedonic

estimates, as well as a unit value price index. The QAUV Baseline price index uses the estimates from

the baseline hedonic model to compute quality adjustment factors. There are two QAUV price indexes

computed using the estimates from the mode fixed effects model. The QAUV FE Pure Price index,

treats the fixed effects as if they capture only pure price effects, while the other, QAUV FE Quality,

assumes they capture only mode quality. These polar assumptions are used to illustrate the large impact
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they have on the price index, and the need for a more sophisticated approach to separating unobserved

quality from pure price differences. Finally, QAUV CL is the price index computed using the structural

demand estimates to adjust for mode quality. Figure 6, plots the price indexes separately for each time

block, and the CAGR for each index is given in Table 6.

First, the large difference between the unit value price index and QAUV indexes shows that the modes

are clearly not the same, and that the quality differences are non-negligible. Second, the stark differences

in the mode fixed effects indexes, across all time blocks, highlight the importance of separating pure

price terms from unobserved quality terms. In fact, the price index categorizing the mode fixed effects as

pure price terms is almost always closer to the baseline QAUV price index than the index that assumes

the fixed effects represent quality. Finally, index computed using the estimated quality terms from the

structural demand model is distinct from the other price indexes to varying degrees across the time

blocks, but it is usually closer to the baseline model and the pure price model than it is to the mode

fixed effects quality model. Even more importantly, it tends to be above the index for the pure price

model rather than between it and the pure quality model, which highlights the fact that the fixed effects

price indexes do not capture all the unobserved variation in quality; namely variation over time.17

Table 6 offers further insight into the differences across price indexes. First, the time blocks have

different growth rates within price index method, which implies that rides during one time block can

be considered different goods from those in another time block. This should not be too surprising. For

example, rides during bar hours and those during morning rush hour serve entirely different purposes,

so different price trends should be expected. The growth rates highlight the large difference in the fixed

effects price indexes, with the magnitude of the CAGR for the pure quality model being at least twice that

of the pure price model in almost every time block. The growths rate for the consumer learning model

are relatively small for all time blocks. Again, the morning rush period provides a particularly interesting

comparison; with the other models exhibiting relatively large price increases, while the consumer learning

model finds almost no price increase.

17It is also true that the price indexes derived from the polar assumption on the treatment of the fixed effects do not
necessarily provide bounds for an index that assumes some portion of each fixed effect is quality and some is pure price
difference (i.e. an index that relaxes the polar assumptions).
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Time Block Unit Value QAUV Baseline QAUV FE Pure Price QAUV FE Quality QAUV CL

Bar Hours 1.48 -1.02 -1.54 -6.01 -0.69
Evening Rush 4.80 -2.04 -2.55 -5.42 -1.37
Morning Rush -1.20 3.15 2.84 2.00 0.17
Weekday Day 5.33 1.49 0.37 -2.37 0.69
Weekday Evening 2.47 -1.48 -3.26 -6.35 0.17
Weekend Day 2.84 -1.44 -1.57 -5.81 -0.05
Weekend Evening 2.38 -0.51 -2.37 -5.88 -0.82

Table 6. Price Index CAGR Table

Notes: All values are percent change.

6. Conclusion

This paper has presented a new framework for estimating quality adjustment factors for QAUV price

indexes that separates unobserved quality from pure pricing differences. The method utilizes a Bayesian

updating mechanism to capture unobserved variation in demand that is exogenous to prices, which allows

for the identification of unobserved quality adjustment terms. The approach is assessed by computing

price indexes for taxis and rideshare services in Manhattan using a variety of methods, which are then

compared to the QAUV consumer learning price index. The price indexes computed using the proposed

method exhibited consistent differences, across a variety of distinct time blocks, relative to the existing

methods. Most notably, the CAGRs calculated from the consumer learning model indicated differences

in price growth estimates that were as large as 6.5%, in some cases, depending on the QAUV method

used in the comparison. The implication being that the proposed method is not just algebraically

different, but that the difference in numerically meaningful. However, it is important to recognize that

the framework will be more useful when there are important unobserved quality characteristics that not

only impact price, but change over the course of the sample. In settings where these issues are not

substantial, the improvement over other methods is likely not large enough to justify the time-consuming

estimation procedure. Therefore, a careful assessment of the market for a good or service is essential

to determining whether the framework will be helpful.

A. Derivations

Following de Haan and Krsinich (2018), I derive the consumer learning estimate of the quality ad-

justment factor for mode j at time t relative to a hypothetical mode b. The hypothetical mode is
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constructed to have constant quality over the entire sample period, which is done by averaging the

vector of characteristics over all modes and time periods. Additionally, the unobserved quality function

is set to equal that of taxis, which is zero for all periods. Thus, the estimate for the quality adjustment

factor for mode j at time t is:

ψ̌j/b,t = exp{
(
Zjt − Z

)
β̌ + ǧjt − ǧtaxist } (17)

where Z is the vector of characteristics averaged over all modes and time periods. In the case of the

standard hedonic model, the quality adjustment factor is constructed in the same fashion, but there are

no unobserved quality functions. The quality-adjusted predicted price is:

ˇ̃pjt =
pjt

ψ̌j/b,t

= pjt exp{
(
Z− Zjt

)
β̌ + ǧtaxist − ǧjt} = exp{δ̌0 + δ̌t + Zβ̌ + f̌jt + ějt} (18)

where the last equality follows from the unobserved functions for taxis being equal to zero. The bilateral

quality-adjusted unit value price index is then given by:

PQAUV,CL
t−1,t =

∑
j

ˇ̃pjtqjt

/∑
j
qjt∑

j

ˇ̃pjt−1qjt−1

/∑
j
qjt−1

=

∑
j
sqjt

ˇ̃pjt∑
j
sqjt−1

ˇ̃pjt−1
(19)

B. Additional Tables
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Time Block Mean Std. Error Min Max Median

Adjusted Multiplier Bar Hours 1.157 0.199 1.000 2.123 1.102
Evening Rush 1.195 0.251 1.000 2.513 1.098
Morning Rush 1.250 0.270 1.000 2.299 1.200
Weekday Day 1.095 0.128 1.000 1.962 1.048
Weekday Evening 1.102 0.148 1.000 2.002 1.048
Weekend Day 1.106 0.158 1.000 2.058 1.039
Weekend Evening 1.096 0.169 1.000 2.222 1.029

Distance Bar Hours 1.960 0.531 0.952 3.898 1.841
Evening Rush 1.698 0.504 0.810 6.227 1.703
Morning Rush 1.949 0.446 1.000 3.755 1.994
Weekday Day 1.834 0.466 1.288 3.456 1.831
Weekday Evening 1.790 0.415 1.329 3.453 1.752
Weekend Day 1.969 0.698 1.320 7.959 1.904
Weekend Evening 1.875 0.586 1.316 5.400 1.789

Duration (Minutes) Bar Hours 11.215 3.107 6.686 27.554 11.086
Evening Rush 14.844 4.022 7.155 32.133 14.973
Morning Rush 13.095 3.299 7.932 22.223 13.676
Weekday Day 16.257 4.080 10.142 40.375 16.487
Weekday Evening 11.751 2.561 7.535 20.653 11.964
Weekend Day 12.781 4.414 7.310 49.885 12.617
Weekend Evening 12.704 3.539 7.665 35.986 12.627

Inside Share Bar Hours 0.333 0.404 6.02e-5 0.950 0.098
Evening Rush 0.333 0.404 2.9e-5 0.942 0.097
Morning Rush 0.333 0.421 6.88e-6 0.961 0.076
Weekday Day 0.333 0.420 2.83e-5 0.963 0.079
Weekday Evening 0.333 0.407 5.23e-5 0.948 0.096
Weekend Day 0.333 0.422 2.46e-6 0.973 0.076
Weekend Evening 0.333 0.402 6.63e-5 0.948 0.104

Surge Share Bar Hours 0.016 0.037 0.000 0.256 0.003
Evening Rush 0.012 0.031 0.000 0.241 0.002
Morning Rush 0.031 0.109 0.000 1.000 0.003
Weekday Day 0.003 0.008 0.000 0.073 0.001
Weekday Evening 0.004 0.009 0.000 0.070 0.001
Weekend Day 0.007 0.018 0.000 0.175 0.001
Weekend Evening 0.007 0.028 0.000 0.343 0.001

Table 7. Summary Statistics by Time Block
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C. Simulation Procedure

C.1. Simulation

In order to evaluate the likelihood function, both the signal noise and mode-level demand shocks must

be integrated out. Since the mode-level demand shocks are i.i.d., the full expression for the likelihood

function in (15) can be written as the following:

L (θ) =

∫ [ T∏
t=1

∫
ℓ (qt,pt|χt, E [λ|It]s , ξrt ;θ) dF (ξt)

]
dF (εEt ) (20)

Since it is computationally infeasible to evaluate these integrals numerically, they must be simulated.

The simulated likelihood function is obtained by taking SE draws of the signal noise, εEjt, and Sξ draws

of the mode-level demand shocks, ξjt. Each sequence of signal noise draws,
{
εE,s
jτ

}T−1

τ=0
, where s

denotes a single draw, is used to recursively generate a simulated sequence of perceived quality vectors,

{E [λ|Iτ ]s}Tτ=1. The draws of mode-level demand shocks are denoted by r, so that the simulated

likelihood is given by:

L (θ) =
1

SE

SE∑
s=1

 T∏
t=1

 1

Sξ

Sξ∑
r=1

ℓ (qt,pt|χt, E [λ|It]s , ξrt ;θ)

 (21)

The simulated sequence of perceived quality for a given mode, j, is computed using the formula in

(5). This requires computing the mode-level signal for each simulation draw. For a given draw, s, the

simulated mode-level signal is given by:

λ
E,s
jt = λ̂j + εE,s

jt

σE√
κjqjt

(22)

where λ̂j is the estimate of the true mode quality.

C.2. Kernel Smoothing

The second part of the simulation procedure is in regard to the sampling and prediction errors introduced

into the estimating equations that form the likelihood function. These errors are ηt for the demand

equation, and ν for the pricing policy function. They ensure that the simulated likelihood function is
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Time Block k

Bar Hours 3
Evening Rush 3
Morning Rush 4
Weekday Day 5
Weekday Evening 5
Weekend Day 5
Weekend Evening 5

Table 8. Scaling Factors for Kernel Smoothing

differentiable and assigned positive density for each simulation draw. If the variance of these errors is

small enough, derivative-based optimization procedures tend to suffer. When this is an issue, a kernel-

smoothed frequency simulator similar to smoothing procedure in McFadden (1989) can be implemented.

This method simply multiplies the variance of the sampling errors by a constant, k, which leads to the

following simulated likelihood function:

L (θ) =
1

SE

SE∑
s=1


T∏
t=1

 1

Sξ

Sξ∑
r=1

 Jt∏
j=1

1

kpj
K

(
ln psrjt − ln pjt

kpj

) ·
(
|Kt|−

1
2K
(
K

− 1
2

t (qsrt − qt)

))
(23)

where kpj = kσν , Kt = kΣηt , K(·) is the Gaussian kernel, and the rs superscript denotes the rs

simulated draw. The scaling factors, k, for each time block are presented in Table 8.
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