[ARIW 2024

Thursday, August 22 — Friday, August 30
IARIW 2024

The Net Zero Transition and Aggregate Productivity

Emilien Ravigné
(University of Oxford)
Francois Lafond

(University of Oxford)

Paper prepared for the 38th IARIW General Conference
August 26-30, 2024

Session 2B-2, Productive and Inclusive Net Zero II

Time: Wednesday, August 28 , 2024 [16:00- 17:30 GMT]




The impact of the Net Zero transition
on aggregate productivity”

PRELIMINARY AND INCOMPLETE
COMMENTS WELCOME

é1,2

Emilien Ravigné!? and Frangois Lafond!-?

I nstitute for New Economic Thinking at the Oxford Martin School, University of Oxford
2Smith School of Enterprise and the Environment, University of Oxford

July 31, 2024

Abstract

Reaching net zero emissions requires deep transformations of the production system, neces-
sarily affecting productivity. However, very little is known about the aggregate productivity
effects of technological and structural changes implied by net-zero scenarios. We build a
parsimonious and transparent framework to assess these impacts. Our approach uses price
and output growth pathways available in net zero scenarios, and derives industry-level and
aggregate productivity growth. In this draft, we present only our method.
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1 Introduction

Most macroeconomic models assessing the trajectory to net zero emissions assume exogenous
and constant productivity growth, making economic growth only marginally dependent on the
technologies and policies implemented. To give a simple example, typical models predict that
under net zero scenarios, GDP in 2050 will be a couple of points higher or lower than in scenarios
without the transition, but in both of these scenarios GDP in 2050 is roughly 3/4 higher than
today, driven by exogenous assumptions on productivity growth. In DICE, productivity growth is
exogenous, at more than 5%/yr until 2100 (Barrage and Nordhaus, 2023).

Assuming exogenous productivity growth in climate models is problematic because transition
scenarios typically require deep transformations of production systems, including through the
creation and deployment of new technologies, which should almost necessarily affect productivity.
Unfortunately, while there are now fairly detailed scenarios and plans for the net zero transition,
laying out how various technological options are deployed, these scenarios do not provide an
assessment of the impact on aggregate productivity.
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Our key contribution is to build a parsimonious, transparent and replicable framework
to translate published net zero scenarios into productivity growth. Noting that the net zero
transition will affect directly and profoundly only a limited subset of industries, we evaluate
the impact on these industries, and aggregate these using weights justified by a fairly general
theoretical framework. More specifically, our method follows two steps.

First, we infer industry-level productivity changes implied by net zero pathways. While
scenarios generally include paths of price and production for key technologies, it is not straight-
forward to translate these into projections of industry-level TFP. For instance, the price of a
technology may decline simply because its inputs are cheaper, rather than thanks to productivity
improvement. To solve this issue, we introduce a simple assumption - we posit that the share
of productivity growth that is translated in higher volume rather than lower prices is constant.
While this relationship does not necessarily always hold, and is not theoretically motivated, it can
be tested in the data. This is the key assumption allowing us to translate technology-level price
and output scenarios into productivity pathways.

Second, we aggregate these industry-level productivity shocks into aggregate productivity.
Productivity shocks accumulate along the supply chain, thus the position of an industry in the
production network (upstream or downstream) determines an industry’s influence on aggregate
productivity. However, we show that under fairly general conditions (and in particular, outside
of an equilibrium framework), the growth rate of aggregate productivity is a weighted average
of industry-level productivity growth rates, with weights given by “Domar weights”, which sum
up to more than 1. This procedure, known as “Domar aggregation” is extremely useful for two
reasons: first, it allows us to deal with each industry independently, rather than having to model
explicitly all the supply chain interdependencies between industries. Second, it allows us to
consider industries as they are defined in the net zero scenarios, rather than as they are defined in
typical industry classification systems. Domar aggregation theoretically holds only under specific
assumptions, which is why, here again, we test the validity of this procedure on past data.

Because these two steps can be tested on past data, we verify that they would have led to almost
unbiased forecasts if they had been used in the past to predict productivity based on future prices
and output. Of course, these predictions would not have been perfect - therefore, we use the
distribution of errors to construct prediction intervals, providing us with empirically validated
predictions of aggregate productivity conditional on net-zero scenarios.

We are in the process of applying this method to the UK, using mostly UK Climate Change
Committee (CCC) and International Energy Agency (IEA) scenarios, and comparing different cost
estimates when available. Preliminary results suggest offsetting effects, with the renewable energy
transition boosting productivity, thanks to cheap solar and wind energy, but hard-to-decarbonize
industries (e.g. cement) contributing mostly negatively to productivity growth. We are still
revising these results, and developing estimated for other industries.

What is net zero? The net zero transition is a frame of reference through which mitigation
action against climate change is structured. It is a scientific concept acknowledging that the
main parameter for climate is the greenhouse gas concentration in the atmosphere resulting from
the balance of human-made and natural emissions and natural sinks (Fankhauser et al., 2022).
Meeting the 2°C target with a 50% chance means the remaining global carbon budget as of January
2023 was 1200 GtCO, and 250 GtCO, for the 1.5°C target (Lamboll et al., 2023). With the current



emissions level at around 40 GtCO,/year, this means reaching net zero emissions around 2050,
which supposes planning a long-term strategy.

Mitigation pathways feature a large set of heterogeneous measures: energy efficiency mea-
sures, the transformation of the energy generation sector, the adoption of new technologies
and processes, often industry-specific, and the development of carbon removal techniques. The
impacts of this multi-faceted transition are therefore difficult to anticipate and can vary greatly
between scenarios but are likely to impact macroeconomic indicators, including productivity.

Literature. There are various streams of literature analysing the empirical and theoretical
relationship between environmental policies and macroeconomic outcomes. Most of the literature
on the relationship between environmental policies and productivity pre-dates the recent price
parity achieved by renewable energy, and proxies environmental policies through higher energy
prices.

The well-known “Porter hypothesis” (Porter, 1996) claims that more stringent environmental
policies boost productivity through enhanced innovation. Meta-analyses in various countries
from firm-level to country-level do not show robust and consistent results (Benatti et al., 2024;
Cohen and Tubb, 2018; Ambec et al., 2013; Kozluk and Zipperer, 2015). The effects at the firm-
level are generally heterogeneous, with the most productive firms exhibiting productivity gains
while others see their productivity fall (Albrizio et al., 2017).'. Greenstone et al. (2012) finds that
air quality regulations, the 1970 Clean Air Act, caused a 2.6% decline in total factor productivity
(TFP) in the US. They modeled these TFP losses by attributing a non-productive and exogenous
share of output to regulatory compliance activities (monitoring, reporting, and abatement). Marin
and Vona (2021) find that increased energy prices have on average a negative short term impact
on firm-level productivity. André et al. (2023) finds a negative short-term impact of energy price
shock on productivity but a positive impact four-year after the shock. More recently, Colmer et al.
(2024) find that the EU Emissions Trading System (ETS) induced regulated firms to reduce by
14-16% their CO2 emissions compared to non-regulated firm. They find no evidence of economic
contraction, offshoring or carbon leakage. On the contrary, they find weakly positive effects on
productivity, value added, investment, and employment.

A large literature estimates the impact of environmental policies — in particular through
higher carbon or energy prices — on innovation, but does not quantify the subsequent impact
on productivity (Aghion et al., 2016; Calel and Dechezlepretre, 2016). Directed-technical change
models (Acemoglu et al., 2012) provide theoretical foundations on the impact of green policies
— especially prices and subsidies — on R&D in the clean and dirty sectors. Substitution between
factors leads to productivity impacts. Hémous and Olsen (2021) offer a literature review of these
models and the empirical evidence of such phenomenon, implicitly highlighting the difficulty of
calibrating such models, as it is difficult to obtain robust estimates of the various elasticity of
substitutions.

Integrated Assessment Models have produced a large number of transition scenarios and
productivity trajectories. DICE (Barrage and Nordhaus, 2023) and REMIND (Leimbach et al.,
2010) assume exogenous productivity growth. WITCH (Bosetti et al., 2006) models endogenous
R&D spending and their spillovers, based on a U-shape innovation frontier. IMACLIM is built
on a bottom-up technology-grounded model fed with cost and productivity forecasts (Hourcade

IFor a more thorough literature review of the impact of environmental policies on innovation see Popp et al. (2010).



et al., 2010; Crassous et al., 2006). However, the large number of assumptions, the complexity
of the models and their great heterogeneity make it difficult to compare them and draw a clear
message about the future of productivity under net zero pathways.

More directly related to our work, the recent paper by Hallegatte et al. (2023) proposes a
modelling framework to incorporate net zero scenarios into a CGE model. Their motivation is
very much like ours: making use of detailed techno-economic scenarios usually available at the
country level, and avoiding equilibrium models that essentially assume that the transition will
have a negative impact, by modelling it as a policy-induced distortion in an an otherwise efficient
world. Their approach is to change the parameters of a CGE model to make it match the techno-
economic scenarios, in different ways in different sectors. This has the advantage that having
calibrated a CGE model, they can run counterfactuals.

The report by Bijnens et al. (2024) discusses the effects of climate policies on productivity using
various methods. Overall, their main message, based on an “environmental” DSGE calibrated on
various NGFS scenarios’, is that an orderly transition (an early and gradual increase of carbon
prices) is better for productivity than a disorderly transition (which assumes an initially too
small increase in carbon prices, such that a sharp rise is needed later on to ensure climate
targets). Despite huge differences in carbon price patterns, with the disorderly transition featuring
prices close to 1200 euros, however, the differences in productivity remain small, around half a
percentage point difference of labor productivity level in 2050.

In contrast to these approaches, our reduced-form approach is focused on gauging quantita-
tively the performance of the predictions, by evaluating the errors we would have made if we
had used our approach in the past (i.e. “backtesting” or “hindcatsing”). Given time series of
future prices and quantities, how good are our forecasts of aggregate productivity? Measuring
this carefully naturally leads to making predictions with credible uncertainty ranges. Also, our
approach is simpler and thus more transparent, as it requires calibrating essentially one equation,
rather than numerically solving a complex model.

In the next section (2) we lay out our framework, describing the accounting framework, the
motivation for Domar aggregation, the rationale behind our reduced-form assumption relating
prices and quantities to productivity, and the statistical validation of the overall approach using
hindcasting methods. Section 3 briefly concludes.

2 Theoretical framework

In this paper, we focus on quantifying the implications of net-zero scenarios on aggregate total
factor productivity. TFP is the main long-run driver of economic growth, which itself is the main
driver of income per person.’

2The Network for Greening the Financial System is a network of central banks developing scenarios for the net-zero
and its impact, for use by financial institutions.

3In growth accounting, labor productivity growth can be decomposed into a contribution of TFP and a contribution
from the growth of capital per worker, with each term usually contributing substantially. However, labor productivity
can also be decomposed into a contribution of TFP (TFP growth divided the labor share), and a contribution of a change
in the capital-output ratio (Fernald et al., 2017; Acemoglu, 2024). The capital-output ratio is usually quite stable in
the long term, making it clear that the focus for understanding long term growth should be on TFP. In other words, in
this view capital per worker is endogenous. In a Solow model, the capital-output ratio is stable and capital per worker
depends on TFP. Here we focus on TFP, and in ongoing work we will characterise the impact of the Net-Zero transition



In a nutshell, our goal is to find a function that maps 7 years ahead prices p; ; and quantities
X;  of various industries, as given by scenarios, into aggregate productivity growth between t and
t+1, A; . We solve this problem in two steps. First we map prices and quantities into industry-
level TFP, using a reduced form relation we test empirically, and then we aggregate industry-level
TFP into an aggregate number, using Domar weights, that is,

Sales; ;
_ GDP,
1

In i—: =A;, = f({Xi,z}: {pi,'r}) = g({Ai,t,T(Xi,T,pi,T)}) = (CXLM +(C - 1)ﬁi,t’r), (1)

where we implicitly assume we know prices and quantities of all industries today. Eq. 1 is the
main result of this paper. In the rest of this section, we explain how we arrived at this formula,
and how to implement it, including how we calibrate the parameter C.

2.1 Set-up

We extend the basic set-up of McNerney et al. (2022), which provides a framework showing
how to aggregate industry-level productivity shocks into aggregate growth, based only on basic
accounting relations. Here we extend it to multiple factors, to ensure that aggregate productivity
is defined as total factor productivity, rather than simply labor productivity. We provide detailed
derivations in Appendix A, and report a high-level description here.

Consider a closed economy with N industries, F factors, and D final demand categories”,
where each industry i produces a single homogeneous good. We assume that the Input-Output
system respects the condition that, for each industry i, total sales equal total expenses

N D N F
Zinpi + chipi = ZXiij + ZLfiwf , (2)
=1 I=1 =1 =1

———— — | [
Intermediate sales Final demand sales  [ntermediate expenses Factor expenses

where X;; is the amount of goods produced by j and sold to i, Z;; is the flow of money from j to i,
pi is the price of i, Cj; is the amount of goods from i purchased by final demand category [, L¢; is
the quantity of factor f used by industry i, and wy is the price of one unit of factor f. We denote

total quantities produced by an industry by X; = Z;‘il Xji + Z?Zl Cji, and for any variable X we
denote its log growth rate of as X = dIn X/dt = %.

2.2 Domar aggregation

Let us define industry-level Total Factor Productivity (TFP) shocks as

N F
X; - ZajiXij - Zifitfir (3)
= =

A

on the capital-output ratio.
4In ongoing work we are extending the framework to an economy that is open, and with a government that raises
and redistribute a carbon tax.



where the a;; and l}i are the shares of intermediate inputs j and factor f in i’s total expenses, and

aggregate productivity as
N F
Z@iéi - ZKfI:f,
i=1 f=1
~——

N~————
growth of GDP growth of factor use

A

where 0; is the share of industry i in the total value of final demand and « are the factor shares.
In Appendix A, we show that

N
A=Y Nid;, (4)

where

(5)

is the Domar weight of the industry i, that is, the ratio of the industry value of gross output, p; X;, to
the value of GDP, denoted pY. Since GDP is the sum of industry-level value added, and industry-
level gross output is typically greater than industry-level value added, the weights sum up to
more than 1.

Eq. 4 is known as “Domar aggregation”, after Domar (1961), working with a Cobb-Douglas
production function in simple systems, suggested to use these weights to aggregate industry-level
TFPs. It is also known as “Hulten’s theorem”, after Hulten derived the result in a more general
setting. However, while in Hulten (1978) it is obtained from assumptions about production
functions, cost minimization and general equilibrium, here we follow McNerney et al. (2022)
and show that Domar aggregation follows simply from the accounting definitions’, Eqs. 2 and 3.

Eq. 4 is extremely powerful because it allows us to aggregate industry-level productivity
shocks while ignoring the details of the production network.

One limitation of this result is that it is derived for small changes. There may also be other
reasons why it does not hold in practice, including issues related to data quality or index numbers.
In practice, we test how this aggregation formula works, and keep track of the errors it produces
to construct prediction intervals (Section 2.5 below).

2.3 Estimating industry-level productivity growth from prices and volume scenarios

Since Domar aggregation tells us how to aggregate industry-level productivity shocks, all we
have to do now is to estimate these industry-level productivity shocks. However, estimating
productivity growth from Eq. 3 is a daunting task, as it requires estimating the change in unit
requirement for all inputs. Our key contribution here is to introduce a simple, transparent, and
testable assumption that allows us to circumvent this problem.

>Hulten’s result in a general equilibrium framework (Hulten, 1978) ignores that changes to relative productivity
affect relative sector sizes. To take into account these reallocations, one would need to know how industries’ output
react to changes in relative prices and propagate the shocks through the whole network, leading to an aggregation
equation that, generically, includes the production network and the values of the elasticities of substitution (Baqaee
and Farhi, 2019). McNerney et al. (2022) show that the output multipliers fluctuate much less than the industry-level
TFP terms.



First, note that net-zero scenarios typically include pathways for the prices and/or output of
the industry of interest, p; and X;. So we are looking for a way to predict TFP in the future using
only future values of x; and p;.

Let us start by noting that TFP growth can be written equivalently in its primal or dual form,

N F
Xi_ZajiXij_Zifitfi :_(ﬁi_zwjﬁj_zifiwf)- (6)
j

=1 f=1 j=1 f=1

A

In plain English, total factor productivity growth can be seen as either the growth of volume,
netted out of the volume growth of inputs, or as the decline in price, netted out of the decline in
the prices of inputs. Introducing the notation

N F
EXf = ZajiXij - Zlflf‘fl
j=1

F=1

for the growth of the index of inputs of 7, and

A N F ~
Yp = Z”Wjﬁj - Zlfﬂfff
j=1 f=1

for the growth of the index of prices of the inputs of i, the primal-dual identity of TFP, Eq. 6, can
be rewritten as

A

Ai=Xi-3x, =3, - pi (7)
Rearranging, this means that the growth of (nominal) sales can be written as
SAi:Xi'i'ﬁi:)iX,-'i'ﬁpi' (8)

In other words, the growth rate of nominal sales is equal to the growth rate of the cost of inputs,
plus the growth rate of the volume of inputs. We make the key assumption that the relative
contribution of these two terms is constant, that is, we assume that there exists

A

Y,
= # (9)
Epi +EX,-

If C was indexed by industry and time, Eq. 9 would just be a definition. However, we assume
that C is constant over time, country and industry®. Substituting assumption (9) into Eq. 7, and
rearranging using (8) leads to

Aj =X +(C-1)p;. (10)

Eq. 10 is extremely useful — it allows us to determine the growth rate of TFP of industry i by
knowing only its price and output growth — we do not need the price or volume growth of its

5We could have used industry-specific and/or country-specific {. We prefer to use a universal value, because while
it is possible that industry-specific values of C would lead to more accurate predictions, in practice this also introduces
more noise so we face a classic bias-variance trade-off. This is also simpler and thus more transparent.



inputs. Eq. 10 means that productivity growth translates into output growth and price decrease
(if 0 < ¢; < 1) in fixed proportions.

Eq. 10 is a purely statistical relation, with little motivation on theoretical grounds; It is a
reduced form relation, and it is not immune to the Lucas critique. However, this is not an
issue here - we do not need to assume that this relationship is causal, and we do not proceed
to any comparative static; we only need a statistical relation between price/output growth and
productivity growth, allowing us to infer the productivity growth assumptions that are implicit
in net zero scenarios, which only provide future prices and quantities. Appendix B elaborates on
this point further.

Appendix E provides a thorough evaluation of the validity of Eq. 10 in past data using
hindcasting methods, for a universal value of C. That is, for various databases, we put ourselves
in the past and assume that we know future values of prices and output, and try to predict
productivity, just as we will do in the next section with net zero scenarios. Crucially, we show
that we can find C such that Eq. 10 leads to almost unbiased forecasts. Furthermore, we use
the forecast errors to characterise uncertainty in the next section. In other words, we will make
predictions of productivity conditional on prices and quantities, and we will assume that our
errors for these predictions are similar to the errors we would have made in the past if we had
used this method.

2.4 Estimating industry-level productivity growth from the productivity growth of
the dirty incumbent and the clean alternative

Typically, net zero scenarios describe a process whereby, at the industry level, a green technology
replaces a dirty incumbent. Thus, we need to take into account the productivity impact of both
the rise of the clean technology and the decline of the dirty technology. One approach could be
to estimate Eq. 10 on the clean and dirty subsectors separately. However, this raises an issue with
using Domar aggregation (Eq. 4), as the Domar weights of the clean and dirty subindustries are,
by definition of a “clean transition”, changing substantially, so we would need to update them
dynamically.

Instead, we propose to consider the clean and dirty alternatives together within each industry.
That is, we construct an aggregate price and quantity index for the industry (say “electricity”
or “steel”), and use the price and quantity index directly in Eq. 10 to determine industry-level
productivity growth.

This raises an important question: what is the best index number for doing this? We have
found that classic index numbers (Paasche, Laspeyre, Fisher, etc..) can give pathological results,
in the sense that substituting a cheap dirty technology by an expensive clean technology can give
price declines and thus positive productivity growth (see Appendix C). The intuition for this is
simple: if both prices are non-increasing, a classic price index will be non-increasing; however, in
the case of the net-zero transition, we are sometimes substituting a cheap product by an expensive
one, so we would expect the industry-level price to increase.

Fortunately, here, we can make the assumption that each sector has a single, homogenous
output, even though it may arise from different production techniques. For example, the
electricity sector produces MWh of electricity, whether they come from fossil fuels or renewables.
Similarly for the steel sector, a ton of clean steel from electric furnaces replaces a ton of dirty steel
produced using coal.



Therefore, we use what is known as the “unit value” index (Balk, 2012): we express clean and
dirty production in the same units, and define aggregate volume output as the simple sum. The
price index is then the average of output prices weighted by their volumes.

2.5 Statistical validation of the framework and estimation of uncertainty

To sum up, our approach proceeds as follows. First, we select a few key industries that are
typically important in net zero scenarios. For each industry, we look for scenarios for the price and
quantities of the clean and dirty alternatives. We then construct industry-level price and quantity
indices using unit value indices. Next, we use Eq. 10 to retrieve industry-level productivity
scenarios from prices and quantities. Finally, we use Domar aggregation (Eq. 4) to compute
the aggregate productivity impact.

Both our reduced-form approach to obtaining industry-level TFP and Domar aggregation are
subject to errors. Here we test both assumptions on past data, and show how to use the errors to
derive uncertainty intervals for our predictions. Note that our goal is to estimate the aggregate
productivity impact associated with specific net-zero scenarios; we take the scenarios as given,
and predict aggregate productivity conditional on these scenarios; we do not seek to characterise
the uncertainty inherent to the price and quantity paths in the scenarios, but only the uncertainty
associated with the use of our method to translate these scenarios into aggregate productivity
numbers.

First, recall that Eq. 10 relates price and quantity growth to TFP growth. In Appendix E, using
several databases, we use this equation to make predictions for the growth rate of productivity
at horizon 7, conditional of prices7 and production growth, and assuming a universal value of C,
that is

APYY = CRige 4 (€= Vi (11)

1,t,T

where for all variables we denote long growth rates between t and t + 7 as £; ; . = log(x; ./x;;), and
the subscript i denotes a given industry in a given country. We explore various values of ¢, and
choose one that minimizes the bias of the forecast.

The bottom left panel of Fig. 2.5 shows the distribution of the errors of these predictions,

that is A?i‘; —Ai,t]tﬂ. We find that the predictions are close to unbiased, although with fairly
large errors. We use the distribution of these errors to quantify the uncertainty, that is, we use the
empirical quantiles of this distribution to construct prediction intervals around our point forecast
given by Eq. 11. The three top left panels show how this procedure would have worked on past
data for the manufacturing industry in three countries, showing that indeed, while predicting
productivity from prices and output is far from perfect, it is possible to make useful predictions
as long as uncertainty is accounted for in an objective and data-driven manner.

We proceed similarly with Domar aggregation (Appendix D): If in a given year in the past

we had known future industry-level growth rates, and initial Domar weights, would we have

7In the scenarios, future prices are given in today’s value of the currency. Therefore, to test the framework on past
data, we need to express all prices in the same base year. In practice, we use the value added price deflator at the
country-level to compute “real” price growth at the industry-level.
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Figure 1: Evaluation of forecast errors from the industry-level productivity growth predictions, and from Domar
aggregation. The left side of the figure presents the error in hindcasting the industry-level productivity growth with
a value C = 0.128. Top-left panels are hindcasting of TFP growth versus the true productivity growth in the US, the
UK and Germany. Hindcasts are respectively in 1997-2020, 2002-2017, 1997-2020. The bottom-left panel shows the
distribution of the error by horizon, pooling all countries and industries in KLEMS. The right side of the figure shows
hindcasting results for Domar aggregation. Top-left panels are hindcasting of TFP growth versus the true productivity
growth in the US, the UK and Germany. The UK performs poorly in the horizon, but it is an outlier compared to the
rest of the database. The bottom-right panel shows the distribution of the errors by horizon, pooling all countries and
industries in KLEMS. Both hindcasts are unbiased at horizon 25 years.

predicted aggregate productivity correctly? We predict
PR
~pre .
Alc:),t,T = Z/\j,c,tAj,c,t,r’ (12)
j=1

for each country c, year t and horizon 7, using all industries j. The bottom right panel of Fig. 2.5

c s . rpred & . oy . .
shows the distribution of the error, Affr —Ac .+, showing a small positive bias for most horizons

(at horizon 15 years, aggregate TFP growth is of the order of 5-10%, so a 1pp bias is not huge).
The three panels on the top right again show the predictions for three different countries, using
the quantiles of the distribution of errors to construct prediction intervals, and overlaying the
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underlying ground truth. Notably, Domar aggregation performs poorly for the UK using this
dataset, but as shown in Appendix D this is an extreme case.

We construct final uncertainty ranges for the aggregate combining the distribution of errors for
the industry level productivity growth estimation and the Domar aggregation. We use a Monte-
Carlo method: for each run, we draw N values from the distribution of industry-level errors,
we aggregate them with their respective Domar weights, and then we draw one value from the
distribution of aggregation errors and add it. We repeat the process 10,000 times to get a stable
distribution of aggregate errors.

3 Discussion and conclusion

In this paper, we have developed a parsimonious and flexible framework to estimate the
productivity growth impact of net zero scenarios.

To estimate the industry-level productivity shock from the price and output data available in
scenarios, we have developed a reduced-form, data-driven approach. We have then shown how
to aggregate these industry-level productivity shocks without relying on any specification of the
production function or general equilibrium assumptions.

Our approach is transparent, tested in past data, and uses the errors made in testing to
characterise the uncertainty of the predictions. We think this makes our results more robust than
more sophisticated integrated assessment models, and in any case, provides a clear benchmark
against which other methods should be compared.

In ongoing work, we are applying this framework to various industry-level scenarios, in
key industries such as energy, transport, heat, steel and cement. Preliminary results indicate
that (i) the aggregate effect is the result of somewhat counterbalancing industry-specific results,
with energy likely featuring productivity gains and “hard-to-decarbonise” industries having
productivity losses, and (ii) the aggregate impact is not linear in time, with costly upfront
investment that pays off in terms of lower operating costs at longer horizons.
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A Domar aggregation

McNerney et al. (2022) derive Domar aggregation from a basic accounting framework. However,
their derivations consider only a single factor, labor, so their equations typically express real
quantities by deflating using the wage rate. To ensure that we interpret and measure TFP
shocks properly, we extend the framework to include capital. We also provide a much more
straightforward proof.

Starting from the industry-level accounting identity,

N D N F
ZinPi + chipi = injpj + ZLfiwf’
=1 I=1 j=1 f=1

Total Sales, p; X; Total expenses

we can take time derivatives and rearrange to get

sz +UJf

MZ
M’Tj

]:1 :1

where the aj; and l}i are the shares of intermediate input j and factor f in i’s expenses.
Rearranging, we have the definition of industry-level TFP as

N F N F
Aj=X;- Z“jiXij - Zifﬂ:fi =—|Pi— Z“jiﬁj B Z,ifiwf ‘ (13)
j=1 j=1

TFP, primal approach TFP, dual approach

GDP (in value) is the sum of final consumption

GDP=pY =) pCi. (14)
i=1
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Taking time derivatives,

N DA N o~ F L. F L
_le—yc Z;?ﬁi:Z%LﬁZ%wﬂ (15)

so that assuming a price index

we have real GDP growth as

. iCi
Y= E ¥ C;. (16)

Now we define aggregate TFP growth as the growth of (volume) GDP minus the factor-share
weighted growth of the volume of factors

N F
A piCi A wrly
A= —0C; - ——L,. (17)
~pY ; py
— S —

growth of real GDP  growth of volume of factors

We want to show that Domar aggregation is valid, that is

N
A=) MA, (18)
i=1

where the “Domar” weight A; = p; X;/pY.

Proof. We want to show that the definition of aggregate TFP, Eq. 17, is equal to (18). We show
this using the primal side of TFP. Substituting the LHS of (13) into (18) and replacing A; by its
definition, we need to prove

N F N F
N PR Nty ) NSRS s N WLy

Distributing the LHS into three sums and simplifying all the p; X;/p; X;,

LY @

i=1 j=1 i=1 f=1

A=

A/—/
(1) (2) (3)

Consider the third term, and permute the sums to get

F wf N X F w LfA
B)=) ) Lilp=) —=Ly, (21)
=P = = P



where we have used LfI:f =) LfZI:fl Similarly for the second term, permuting the two sums and
using the fact that since X; =} ; X;; +Cj, ) XZ]XZ] =X ( —(Cj/X;)Cj), it becomes

- piX piC;
Pj i J
= — — X - 22
pY -Zl Zl py ! Z pY G 22
Substituting Eqs 21 and 22 back in Eq. 20, the first term of Eq. 22 cancels out the first term in Eq.
20, so that we are left with the RHS of Eq. 19. O]

B Discussion of the relation between prices, output and productivity

Here we elaborate on the empirical and theoretical content of our assumption relating industry-
level prices and volume growth to productivity growth,

A; = (X +(C-1)py,

Eq. 10 in the main text.

One way to think about this assumption behaviourally is that Eq. 10 simply describes the
extent to which productivity growth is translated into either volume growth (C = 1) or price
declines (C =~ 0), although we do not restrict 0 < ¢ < 1. Eq. 10 also shows that, assuming C > 0,
productivity growth depends positively on output growth, as has been well documented for labor
productivity under the name of the Fabricant-Kaldor-Verdoorn law (Metcalfe et al., 2006), or in
the “learning curve” literature when considering the growth of cumulative output (see Lafond
et al. (2022) for a discussion of the differences between the two).

To get further insights into the mechanistic implications of this assumption, we can transform
Eqg. 8 into
Yp _ Ex
C 1-C
If the firm increases its nominal sales by 10%, Eq. (23) implies that the unit cost of inputs grew
by ﬁp =10% x C, no matter whether the sales of the firm increased because of higher volumes or because
of higher prices. While we intuitively think that firms pass down higher input prices as higher
output prices, or higher volume inputs purchases as higher volume output, these relationships
are broken down here.

Another way to highlight an issue is this. Eq. (23) also implies

. 1-Cq

EX = C
which can be read as a price elasticity of input demand relation, making the assumption of a
constant C feel somewhat more familiar. However, generally (but not necessarily) we expect 0 <
C < 1, which would imply a positive price elasticity. This makes it very clear that C does not
characterise a behavioural relation, but simply the fact that in the data we generally expect some
inflation, and some growth in volume, so that an observed relation like (24) makes perfect sense.
Again, and to conclude, we regard this relation as a useful reduced-form regularity, and we do
not think of C as a “deep” parameter. How an industry translates its productivity gains into higher

+P1 = (23)

—=3, (24)

15



production or lower prices is likely to depend on market characteristics, especially competition,
the elasticity of demand, and the rate of innovation. However, we think these characteristics are
unlikely to drastically change in the medium term despite the net zero transition, so that the
reduced form relation should remain a useful regularity.

C The index number problem and why we assume homogenous
industry-level output

To see why we prefer to assume homogenous output than to use index numbers, consider a simple
but pathological example (Table 2). Our economy features a transition from a dominant dirty
sector to a prominent clean sector, and the clean sector is initially more expensive but is getting
cheaper.

Table 1: Simple example of a two-good economy
Period 1 Period 2

Quantities

Dirty 90 50
Clean 10 50
Total 100 100
Unit cost

Dirty 600 600
Clean 1500 1200
Sales

Dirty 54000 30000
Clean 15000 60000
Total 69000 90000

Because both prices are non-increasing, prices indices are non-increasing, even though the
price of an “average unit” is increasing.

More precisely, with the numbers from Table 2, the Paasche price index would be (50 x 600 +
50 x 1200)/(50 x 600 + 50 x 1500) = 0.86, indicating a decrease of roughly 15% of the price, even
though we have replaced 40% of the conventional production by the expensive clean good. A
decrease in price would translate, in our framework, into an increase in productivity. We consider
this a pathological outcome given that we have replaced a cheap technology by an expensive one.

We have evaluated in Table 2 various price and quantity indices and the basic issue remains, so
we prefer to assume that the dirty incumbent and the alternative produce a homogenous product.
This is known as the “unit value” index in the index number literature (Balk, 2012). This index
assumes homogeneity between the units, so that the price index is the average price paid for one
unit of good, and the quantity index is the total number of units.
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Table 2: Price and quantity indices

Laspeyres Paasche Fischer Tornqvist Unit Value

Price index 0.96 0.86 0.91 0.91 1.30
Quantity index 1.52 1.36 1.44 1.47 1
Sales index 1.30 1.30 1.30 1.33 1.30

Note: The indices are computed using the numerical values in Table 1, and the definitions of the price
indices can be found in Balk (2012). Sales index is the product of the price and the quantity indices for
Fischer, Tornquist and the Unit Value Index. For Paasche and Laspeyres, the sales index is the product
of the Paasche price index and the Laspeyres quantity index and conversely.

D Empirical testing of Domar aggregation

In progress.

E Empirical testing of the reduced-form relationship between TFP,
prices and quantities

In progress.

F Computing aggregate error

In progress.
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